The Intelligent Universe : AI's Role in Astronomy

個数:
電子版価格
¥25,799
  • 電子版あり
  • ポイントキャンペーン

The Intelligent Universe : AI's Role in Astronomy

  • ウェブストア価格 ¥40,561(本体¥36,874)
  • Wiley-Scrivener(2025/10発売)
  • 外貨定価 US$ 195.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,840pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 528 p.
  • 言語 ENG
  • 商品コード 9781394355488

Full Description

Uncover the universe's secrets with this essential guide that provides a comprehensive exploration of how artificial intelligence is revolutionizing modern astronomical research.

Artificial intelligence (AI) is revolutionizing astronomy, enabling researchers to process vast datasets, uncover hidden patterns, and enhance observational precision like never before. This book explores this transformative synergy, bringing together insights from experts across the globe. Covering a wide spectrum of topics, including AI-driven data mining, exoplanet discovery, gravitational wave detection, and autonomous observatories, this book highlights the impact of machine learning, computer vision, and big data analytics on modern astrophysical research.

From detecting transient celestial events to refining cosmic evolution models, this volume delves into the ways AI is reshaping our understanding of the cosmos. As we enter a new era of discovery, this guide serves as both a foundational reference and a forward-looking exploration of AI's expanding role in space science. Whether you are a student, researcher in astronomy or space science, or an AI practitioner, this book offers an invaluable resource on the frontiers of AI-driven astronomical research.

Readers will find this volume:

Provides a balanced mix of fundamental concepts, practical applications, and future perspectives;
Designed to be informative and approachable, combining scientific insights, high-quality images, and detailed analyses to enhance understanding;
Explores how AI is transforming space exploration, telescope automation, and cosmic data processing, providing readers a future-focused perspective.

Audience

Academics, researchers, astronomers, astrophysicists, and industry professionals interested in the transformative power of AI for astrological applications.

Contents

Foreword xxv
Preface xxvii
Acknowledgement xxxi

Part I: Foundations and Core Applications of AI in Astronomy 1

1 Introduction to AI in Astronomy 3
Rahul Barnwal, Aman Kumar, Kala S. and Sree Ranjani Rajendran

1.1 Introduction 4
1.2 Understanding AI: Key Concepts and Techniques 6
1.3 Fundamentals of Deep Learning 8
1.4 AI Algorithms Shaping Astronomical Research 14
1.5 Revolutionizing Data Analysis: AI in Astronomical Surveys 18
1.6 Machine Learning Models for Celestial Object Classification 21
1.7 AI in Observational Astronomy: Transforming Telescopic Data 24
1.8 Harnessing AI for Space Exploration and Planetary Science 26
1.9 AI-Driven Discoveries: Case Studies in Astronomy 29
1.10 Challenges and Limitations of AI in Astronomy 32
1.11 The Future of AI in Astronomy: Opportunities and Horizons 34
1.12 Conclusion 41

2 Data Mining and Machine Learning in Astrophysics 47
Gissmol Saji and Sanjay Singh Bisht

2.1 Introduction 48
2.2 Foundations of Data Mining and Machine Learning 50
2.3 Machine Learning Applications in Astrophysics 55
2.4 Role of Machine Learning in Key Astrophysical Research Areas 58
2.5 Challenges in the Era of Big Data 75
2.6 Bridging Observations and Theory 77
2.7 The Future: Autonomous Observatories and Predictive Models 79
2.8 Conclusion 81

3 The Role of Artificial Intelligence in the Discovery and Characterization of Exoplanets 87
Shraddha. Biswas, D. Bisht and Ing-Guey Jiang

3.1 Introduction 88
3.2 Exoplanet Discovery 89
3.3 Naming Rules/Nomenclature 92
3.4 Types of Exoplanets 92
3.5 Detection Methods 98
3.6 Missions Launched to Detect Exoplanets 112
3.7 Role of Artificial Intelligence in Exoplanetary Science 117
3.8 Conclusion 123

4 Cosmology and Dark Matter Research 129
Arun Kumar Rathore, B. C. Chanyal and Sirley Marques-Bonham

4.1 Introduction 130
4.2 Role of Dark Matter in the Cosmos 133
4.3 Future Cosmological Observations 133
4.4 Evidence of Dark Matter 134
4.5 Theoretical Models of Dark Matter 149
4.6 ΛCDM and MOND 156
4.7 Sterile Neutrinos 161
4.8 Method of Direct Detection 163
4.9 Indirect Detection 166
4.10 Role of Artificial Intelligence in Dark Matter and Cosmology 169
4.11 AI's Role in Quantum Simulations of Dark Matter 172
4.12 Challenges and Future Prospects 172
4.13 Enhancing Analysis and Interpretation of Astronomical Data 173
4.14 AI in Theory Development and Hypothesis Generation 174
4.15 Challenges and Future Prospects 174
4.16 Conclusion 174

5 Gravitational Wave Detection 181
Muhammad Zeshan Ashraf, Farhat Shakeel and Tahira Saeed

5.1 Introduction 182
5.2 Gravitational Wave Observatories and Detection Techniques 185
5.3 Multi-Messenger Astronomy and Astrophysical Sources 189
5.4 Artificial Intelligence in Gravitational Wave Detection 192
5.5 Challenges and Future Prospects 194
5.6 Conclusion 197

6 Harmonizing the Cosmos: Radio Astronomy and AI Integration 201
Manjuleshwar Panda, Aadarsh Kumar Chaudhri and Mukesh Kumar Pandey

6.1 Introduction: The Synergy of Radio Astronomy and AI 202
6.2 Foundations of Radio Astronomy: Unlocking the Invisible Universe 204
6.3 The Evolution of AI in Radio Astronomy 208
6.4 AI-Powered Signal Processing: Detecting the Weakest Cosmic Signals 211
6.5 Fast Radio Bursts and AI: Solving One of Astronomy's Biggest Mysteries 213
6.6 AI in Pulsar and SETI Research: Searching for Cosmic Beacons 216
6.7 AI in Very Long Baseline Interferometry and Image Reconstruction 219
6.8 AI and Large Radio Surveys: Managing the Data Tsunami 223
6.9 Future Prospects: AI and Next-Generation Radio Astronomy 226
6.10 Conclusion: The Future of AI-Driven Radio Astronomy 229

Part II: Advanced Techniques, Observatories, and Future Prospects 233

7 Image Processing and Computer Vision in Astronomy 235
Deepak Pandey, Garima Punetha and Chetna Tewari

7.1 Introduction to Image Processing in Astronomy 236
7.2 Applications of Image Processing in Astronomy 238
7.3 Processing Techniques for Detecting Transient Events 247
7.4 Specific Techniques for Detecting Key Transients 251
7.5 Role of Computer Vision in Astronomy 255
7.6 Advantages of Using Computer Vision in Astronomy 258
7.7 Applications 261
7.8 Challenges in Astronomical Image 263
7.9 Challenges in Interpretability for Astronomy 268
7.10 Future Directions 271
7.11 Conclusion 272

8 Astroinformatics and Big Data Challenges 279
Kanthavel R., Adline Freeda R. and Dhaya R.

8.1 Introduction to Astroinformatics 280
8.2 Big Data in Astronomy 283
8.3 Data Management in Astroinformatics 285
8.4 Data Processing Techniques 292
8.5 Data Visualization in Astroinformatics 295
8.6 Statistical Challenges in Astroinformatics 301
8.7 Time-Domain Astronomy 305
8.8 Future Directions in Astroinformatics and Big Data 308
8.9 Conclusion 309

9 Autonomous Telescopes and Observatories 313
Himani Mehta, Shakti Singh, V.S. Pandey, Preeti Verma and Anagha Antony

9.1 Introduction 314
9.2 Historical Background of Telescopes 315
9.3 The Evolution of Telescopes 316
9.4 Types of Telescopes and Their Uses 321
9.5 The Role of AI in Autonomous Telescopes 332
9.6 Detecting Techniques and Instruments 336
9.7 AI's Role in Robotic Telescopes 343
9.8 Challenges in Autonomous Astronomy 346
9.9 The Future of Autonomous Astronomy 348
9.10 Conclusion 352

10 Beyond Earth's Horizon: AI's Contribution to Space Exploration 359
Bhumika Sharma, Anil C. Mathur, Rama Sharma and Pratibha Antil

10.1 Introduction 360
10.2 The Evolution of AI in Space Exploration 362
10.3 Applications of AI in Modern Space Missions 364
10.4 AI-Driven Space Robotics 368
10.5 AI in Deep Space Missions and Exploration 371
10.6 AI in Spacecraft Autonomy and Navigation 374
10.7 Challenges and Limitations of AI in Space Science 378
10.8 Future of AI in Space Exploration: Possibilities and Promises 380
10.9 Conclusion 383

11 Exploring Astrobiology and the Search for Extraterrestrial Intelligence (SETI) 391
Yamini Rani and Anurag Kasana

11.1 Introduction to Astrobiology and Search for Extraterrestrial Intelligence 392
11.2 The Role of SETI in the Search for Extraterrestrial Intelligence 396
11.3 The Origin of Astrobiology 397
11.4 Understanding the Universe: A Foundation for Astrobiology 399
11.5 The Search for Life in the Solar System 402
11.6 Venus and the Possibility of Aerial Biospheres 405
11.7 The Role of Space Telescopes (Kepler, TESS, JWST) 409
11.8 The Search for Extraterrestrial Intelligence 412
11.9 The Fermi Paradox and the Great Silence 419
11.10 Ethical and Philosophical Implications of Contacting Extraterrestrial Life 422
11.11 Conclusion 426

12 Anticipating the Unseen: AI's Promise in Illuminating Astronomy's Future 431
Ritika Joshi and Pratibha Fuloria

12.1 Introduction 432
12.2 Modern Issues in Astronomy 438
12.3 AI's Transformative Role in Astronomy 442
12.4 Classification of Images and Its Application in Astronomy 447
12.5 Cosmological Simulations 450
12.6 The Future: AI and Quantum Computing in Astronomy 456
12.7 Challenges and the Path Forward 459
12.8 Strategies for Mitigating Challenges in AI-Driven Astronomy 463
12.9 Conclusion: Embracing the Future of Astronomical Discovery 470

Data Availability 471
Acknowledgement 472
References 472
Index 475

最近チェックした商品