- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
Holistic perspective on environmental nanotechnology and its impact on water quality, focusing pollution control, water quality, and hydrologic pathways
Nanotechnology in Water Research delves into the intersection of nanotechnology and environmental science, exploring the transformative potential of nanotechnology in addressing environmental challenges. The book discusses the characterization, stability, transport, and fate of nanomaterials in water systems, particularly in hydrologic pathways, the applications of nanotechnology in water pollution control, and significant scientific problems and advancements in nanotechnology's role in water research.
This title includes information on:
Nanotechnology and nanoparticle concepts, with many examples related to water quality technologies
Improving water treatment methods while ensuring environmental sustainability
Sensor, remediation, adsorption, and membrane processes that detect, monitor, remove, reduce, or neutralize water contaminants
Analytical technologies, stability theory, filtration theory, and fate and transport of nanoparticles in water to help reduce risks to humans and aquatic systems
Equally valuable as a reference, handbook, textbook, and general learning resource, this essential guide is an excellent read on the subject for students, educators, researchers, professionals, and stakeholders in environmental engineering, nanotechnology, and environmental science.
Contents
Preface xi
1 Nanotechnology and Environmental Nanotechnology 1
1.1 Nanoscale 1
1.2 Nanotechnology: A Short History 3
1.3 Nanotechnology in Water Research 7
References 9
2 Overview of Engineered Nanoparticles 11
2.1 Nanoparticle Basics 11
2.2 Two Important Properties 12
2.3 Prime Nanoparticles 15
2.3.1 Carbon Nanoparticles 15
2.3.2 Metal Nanoparticles 20
2.3.3 Metal Oxide Nanoparticles 24
2.3.4 Other Inorganic Nanoparticles 25
2.3.5 Organic Nanoparticles 26
2.3.6 Natural Nanoparticles 26
2.3.7 Nanoplastics 27
2.4 Case Study: Nanoparticles and Sustainable Agriculture 29
2.4.1 Direct Effect of Engineered Nanoparticles on Plants 29
2.4.2 Nanoparticles for Controlled-Release Fertilizers 31
References 37
3 Nanotechnology and Water Quality Monitoring: Nanosensors 43
3.1 Sensor Basics 43
3.1.1 Overview of Sensors 43
3.1.2 Characteristics 46
3.1.3 Sensors in Water Research 47
3.2 Nanosensors and Their Applications 48
3.2.1 Overview 48
3.2.2 Carbon Nanoparticle-Based Sensors 49
3.2.3 Metal Nanoparticle-Based Sensors 51
3.2.4 Other Nanoparticle-Based Sensors 52
3.3 Case Studies of Nanosensors in Water Research 54
3.3.1 Graphene Film-Based Amperometric Sensors 54
3.3.2 Carbon Dots for Heavy Metal Detection 57
References 59
4 Nanotechnology and Groundwater Remediation 63
4.1 Groundwater Pollution 63
4.1.1 Overview 63
4.1.2 Sources of Groundwater Pollution 64
4.1.3 Groundwater Contaminants 66
4.2 Groundwater Remediation Technologies 69
4.2.1 Environmental Remediation 69
4.2.2 Groundwater Remediation 70
4.2.3 Pump and Treat 72
4.2.4 Bioremediation 72
4.2.5 Chemical Oxidation 74
4.2.6 Prb 74
4.3 Applications of Nanotechnology in Groundwater Remediation 76
4.3.1 Overview 76
4.3.2 Synthesis and Stability of nZVI 77
4.3.3 De-Contamination Mechanisms 81
4.4 Case Studies of nZVI for In Situ Groundwater Remediation 83
References 87
5 Nanotechnology and Water Purification: Membrane Filtration 93
5.1 Overview of Membrane Technology 93
5.2 Membranes in Water Purification 95
5.2.1 Hydraulic Pressure-Driven Membranes 95
5.2.2 MF and UF 96
5.2.3 NF and RO 98
5.2.4 Membrane Configuration 99
5.3 Theories of Membrane Filtration 100
5.4 Nanoparticles in Membranes for Water Purification 103
5.4.1 Arrangement of Engineered Nanoparticles in Membranes 104
5.4.2 Overview of Carbon Nanoparticle-Based Membranes 105
5.4.3 Carbon Nanotube-Based Membranes 105
5.4.3.1 MN-CNT Membranes 106
5.4.3.2 BP-CNT Membranes 107
5.4.3.3 VA-CNT Membranes 108
5.4.4 Graphene-Based Membranes 108
5.4.4.1 NG Membrane 109
5.4.4.2 Self-Standing GO/rGO Membranes 111
5.4.4.3 Graphene-Polymer Composite Membranes 113
5.4.5 Metal Nanoparticle-Polymer Composite Membranes 114
5.4.6 Metal Oxide Nanoparticle-Polymer Composite Membranes 114
5.4.7 Other Nanocomposite Membranes 115
References 116
6 Nanotechnology and Water Purification: Adsorbents 121
6.1 Overview of Adsorption 121
6.2 Adsorption Isotherms and Models 125
6.2.1 Langmuir Model 125
6.2.2 Freundlich Model 127
6.2.3 Temkin Model 128
6.2.4 Dubinin-Radushkevich Model 128
6.2.5 Hybrid Isotherm Models 129
6.3 Adsorption Kinetics and Models 130
6.3.1 Rate-Limiting Process and Kinetic Models 130
6.3.2 Pseudo-Kinetic Models 131
6.3.3 Elovich Model 132
6.3.4 Internal Diffusion Models 133
6.3.5 Homogeneous Surface Diffusion Model 133
6.4 Nanomaterial-Based Adsorbents 134
6.4.1 Overview of Adsorbents 134
6.4.1.1 Biochar 135
6.4.1.2 Activated Carbon 135
6.4.1.3 Ion Exchange Resins 137
6.4.1.4 Zeolite 137
6.4.2 Nanoparticle Adsorbents 138
6.4.3 Nanoparticle-Enabled Sand Filters 139
6.4.4 Nanocomposite Adsorbents 140
6.4.5 3D Gel Adsorbents 142
References 143
7 Nanoparticles in Water: Characterization 149
7.1 Sediments, Colloids, and Nanoparticles 149
7.1.1 Sediments 150
7.1.2 Colloids 150
7.1.3 Nanoparticles 151
7.2 Particles and Water Quality 152
7.2.1 Waterborne Pathogens 152
7.2.2 Engineered Nanoparticles 153
7.3 Analytical Methods for Nanoparticles in Water 154
7.3.1 Direct Separation 155
7.3.2 Visualization 157
7.3.3 Invisible Spectra 160
7.3.4 Other Methods 161
References 162
8 Nanoparticles in Water: Stability 165
8.1 Particle Aggregation 165
8.2 DLVO Theory 167
8.3 DLVO Model of CNTs 170
8.3.1 A Pristine SWNT and an Isotropic Planar Surface 171
8.3.2 A Surface-Modified SWNT and a Charged Isotropic Planar Surface 172
8.4 Nanoparticle Aggregation Kinetics 173
References 177
9 Nanoparticles in Water: Filtration 181
9.1 Particle Filtration 181
9.2 Classical Filtration Theory 183
9.3 Nanoparticle Filtration (Case Studies) 188
9.3.1 CNTs and Sand Columns 188
9.3.2 Biochar and Activated Carbon 191
References 193
10 Nanoparticles in Surface Runoff 195
10.1 Overview 195
10.2 Soil Erosion 197
10.2.1 Overview 197
10.2.2 Soil Erosion Models 198
10.2.3 Rainfall-Induced Nanoparticle Transport in Overland Flow 200
10.3 Vegetative Filter Strips 202
10.4 Single-Stem Efficiency Model 204
References 206
11 Subsurface Transport of Nanoparticles 211
11.1 Overview 211
11.2 Interaction Mechanisms 212
11.3 Influential Factors 214
11.3.1 Nanoparticle Properties 215
11.3.1.1 Particle Size 215
11.3.1.2 Surface Properties 216
11.3.1.3 Input Concentration 217
11.3.2 Medium Properties 218
11.3.2.1 Moisture Content 218
11.3.2.2 Medium Type 219
11.3.2.3 Grain Size 220
11.3.2.4 Medium Temperature 221
11.3.3 Flow Property 221
11.3.3.1 Flow Velocity and Direction 222
11.3.3.2 Ionic Strength 223
11.3.3.3 Solution pH 224
11.4 Transport Models 224
11.4.1 Homogeneous Porous Media 225
11.4.2 Heterogeneous Porous Media 225
References 228
Index 235