Rigid-Flexible Coupling Hoisting Robots : Modeling, Analysis, and Control

個数:
  • 予約

Rigid-Flexible Coupling Hoisting Robots : Modeling, Analysis, and Control

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 384 p.
  • 言語 ENG
  • 商品コード 9781394308941

Full Description

Comprehensive resource detailing the technology of rigid-flexible coupling robots and their applications

Rigid-Flexible Coupling Hoisting Robots: Modeling, Analysis, and Control introduces the configuration and optimization design, mechanics and fundamental mechanical issues, uncertainty analysis, trajectory planning, control, and applications of rigid-flexible coupling hoisting robots. The book also reviews kinematics and dynamics modeling as well as design methods to enhance overall performance including motion decoupling, reconfigurable design, and optimization design. A series of numerical simulations and specific experiments on real prototypes are included to help readers quickly grasp both theory and practical application.

Summarizing the numerous achievements the authors have made in the field in recent years, Rigid-Flexible Coupling Hoisting Robots: Modeling, Analysis, and Control includes information on:

Fundamental challenges including trajectory planning, tracking control, and force control
Multi-objective optimization design for workspace dexterity and stiffness
Kinematic uncertainty analysis with random parameters, narrowly bounded uncertainty, and large-bounded uncertainty
Dynamic uncertainty analysis with hybrid-random and interval parameters
Controller design and platform development

Rigid-Flexible Coupling Hoisting Robots: Modeling, Analysis, and Control is an essential reference on the subject for researchers and engineers in the field as well as graduate students in related programs of study.

Contents

1 Introduction 1.1 The Evolution of Rigid-Flexible Coupling Robots 1.2 The History and Development of Rigid-Flexible Coupling Hoisting Robots 1.3 The Applications of Rigid-Flexible Coupling Hoisting Robots in Various Fields 1.3.1 Construction 1.3.2 Ocean 1.3.3 Storage 1.4 Scope and Organization of This Book References 2 Kinematics and Dynamic Modeling of Rigid-Flexible Coupled Hoisting Robots 2.1 Preamble 2.2 Mechanism Design and Kinematic Analysis of Rigid-Flexible Coupling Hoisting Robots 2.2.1 Mechanism Design of Rigid-Flexible Coupling Hoisting Robot 2.2.2 Kinematic Modeling of Rigid-Flexible Coupled Hoisting Robots 2.3 Dynamic Modeling of Rigid-Flexible Coupling Hoisting Robots 2.3.1 Dynamic Modeling of Rigid-Flexible Coupled Hoisting Robot Based on Lagrange Method 2.3.2 Dynamic Modeling of Rigid-Flexible Coupled Hoisting Robot Based on Newton-Euler Method 2.4 Conclusions References 3 Motion Decoupling, Reconfigurable Design of Rigid-Flexible Coupling Hoisting Robots3.1 Preamble 3.2 Motion Decoupling Design for a 7-DOF Rigid-Flexible Coupling Hoisting Robot 3.2.1 Coupling Characteristic Analysis and Motion-Decoupling Method 3.2.2 Mechanical design of 7-DOF Rigid-Flexible Coupling Hoisting Robot 3.3 Modular and Reconfigurable Mechanism Design of Rigid-Flexible Coupling Hoisting Robots 3.3.1 Design Methodology 3.3.2 Mechanical Description 3.3.3 Typical Configuration 3.4 Integrated Mechanism Design of Dual Machine Collaborative Rigid-Flexible Coupling Hoisting Robots 3.4.1 Mechanical Design 3.4.2 Kinematic Modeling 3.4.3 Dynamic Modeling 3.5 Conclusions References 4 Optimization Design of Rigid-Flexible Coupling Hoisting Robots 4.1 Preamble 4.2 Multi-Objective Optimization Design for Workspace and Dexterity 4.2.1 Kinematic Modeling and Static Modeling of RFCHR 4.2.2 Performance Indices of RFCHR 4.2.3 Multi-Objective Optimal Design 4.3 Multi-Objective Optimization Design for Reliability, Workspace, and Stiffness 4.3.1 Performance Indices of RFCHR 4.3.2 Multi-Objective Optimization Design 4.4 Experiment and Verification 4.5 Conclusions   References 5 Kinematic Analysis of Rigid-Flexible Coupling Hoisting Robots with Uncertainty 5.1 Preamble 5.2 Kinematic Uncertainty Analysis with Random Parameters 5.2.1 Mechanism Description 5.2.2 Inverse Kinematics 5.2.3 DACS Equilibrium Equation Under Narrowly Random Model 5.2.4 MHRM For Luffing Angular Response Field of the DACS With Narrow Uncertainty 5.2.5 Numerical examples 5.2.6 Conclusions 5.3 Kinematic Uncertainty Analysis with Interval Variables 5.3.1 Interval Kinematic Equilibrium Equation 5.3.2 Hybrid Compound Function/Subinterval Perturbation Method 5.3.3 Numerical Examples 5.3.4 Conclusions 5.4 Kinematic Uncertainty Analysis Based on Evidence Theory 5.4.1 Architecture and Kinematics 5.4.2 Error Transfer Model 5.4.3 Uncertainty Analysis Based on Evidence Theory 5.4.4 Simulation and Comparison 5.4.5 Conclusions 5.5 Kinematic Uncertainty Analysis with Hybrid Random and Interval Parameters5.5.1 Hybrid Uncertain DACS With Random and Interval Parameters 5.5.2 The LAR analysis of the DACS with small uncertainty 5.5.3 Hybrid LAR Field Calculation of the DACS 5.5.4 Numerical Examples 5.5.5 Conclusion 5.6 Conclusions References 6 Dynamic Analysis of Rigid-Flexible Coupling Hoisting Robots with Uncertainty 6.1 Preamble154 6.2 Static Uncertainty Analysis with Fuzzy Parameters 6.2.1 Fuzzy Static Equilibrium Equation 6.2.2 CFFPM 6.2.3 MCFFPM 6.2.4 Numerical Examples 6.2.5 Conclusions 6.3 Dynamic Uncertainty Analysis with Hybrid Random and Interval Parameters6.3.1 LSOAAC Equilibrium Equation Under the Hybrid Uncertain Model 6.3.2 MHUAM for the Dynamic Response Analysis of LSOAAC 6.3.3 Hybrid LSOAAC Response Field Calculation 6.3.4 Numerical Examples 6.3.5 Conclusions 6.4 Conclusions References 7 Trajectory Planning and Tracking Control of Rigid-Flexible Coupling Hoisting Robots 7.1 Preamble 7.2 Trajectory Planning for Rigid-Flexible Coupling Hoisting Robots 7.2.1 Inverse Kinematic Modeling 7.2.2 Dynamic Modeling 7.2.3 Point-To-Point Trajectory Planning 7.2.4 Numerical Simulation and Experiments 7.2.5 Conclusions 7.3 Fuzzy Control for Rigid-Flexible Coupling Hoisting Robots 7.3.1 Fuzzy Trajectory Tracking Control 7.3.2 Numerical Simulations 7.3.3 Experiment Validation 7.3.4 Conclusion 7.4 Force Control for Rigid-Flexible Coupling Hoisting Robots 7.4.1 Construction of Experimental Platform 7.4.2 Cable Driving Force Control Method 7.4.3 Control and Monitoring Program Design 7.4.4 Test and Verification Experiment 7.4.5 Conclusion 7.5 Conclusions References 8 Platform Development and Application for Rigid-Flexible Coupling Hoisting Robots248 8.1 Preamble 8.2 Platform Development and Performance Verification of a Rigid-Flexible Coupling Robot for Yard Operations 8.2.1 Physical Prototype Development 8.2.2 Robot Motion Performance Experiment 8.3 Platform Development and Performance Verification for the 7-DOF Rigid-Flexible Coupling Hoisting Robot 8.3.1 Physical Prototype Development 8.3.2 Verification of Decoupling Performance 8.3.3 Overall Performance 8.4 Conclusions References 1 Introduction 1.1 The Evolution of Rigid-Flexible Coupling Robots 1.2 The History and Development of Rigid-Flexible Coupling Hoisting Robots 1.3 The Applications of Rigid-Flexible Coupling Hoisting Robots in Various Fields 1.3.1 Construction 1.3.2 Ocean 1.3.3 Storage 1.4 Scope and Organization of This Book References 2 Kinematics and Dynamic Modeling of Rigid-Flexible Coupled Hoisting Robots 2.1 Preamble 2.2 Mechanism Design and Kinematic Analysis of Rigid-Flexible Coupling Hoisting Robots 2.2.1 Mechanism Design of Rigid-Flexible Coupling Hoisting Robot 2.2.2 Kinematic Modeling of Rigid-Flexible Coupled Hoisting Robots 2.3 Dynamic Modeling of Rigid-Flexible Coupling Hoisting Robots 2.3.1 Dynamic Modeling of Rigid-Flexible Coupled Hoisting Robot Based on Lagrange Method 2.3.2 Dynamic Modeling of Rigid-Flexible Coupled Hoisting Robot Based on Newton-Euler Method 2.4 Conclusions References 3 Motion Decoupling, Reconfigurable Design of Rigid-Flexible Coupling Hoisting Robots
3.1 Preamble 3.2 Motion Decoupling Design for a 7-DOF Rigid-Flexible Coupling Hoisting Robot 3.2.1 Coupling Characteristic Analysis and Motion-Decoupling Method 3.2.2 Mechanical design of 7-DOF Rigid-Flexible Coupling Hoisting Robot 3.3 Modular and Reconfigurable Mechanism Design of Rigid-Flexible Coupling Hoisting Robots 3.3.1 Design Methodology 3.3.2 Mechanical Description 3.3.3 Typical Configuration 3.4 Integrated Mechanism Design of Dual Machine Collaborative Rigid-Flexible Coupling Hoisting Robots 3.4.1 Mechanical Design 3.4.2 Kinematic Modeling 3.4.3 Dynamic Modeling 3.5 Conclusions References 4 Optimization Design of Rigid-Flexible Coupling Hoisting Robots 4.1 Preamble 4.2 Multi-Objective Optimization Design for Workspace and Dexterity 4.2.1 Kinematic Modeling and Static Modeling of RFCHR 4.2.2 Performance Indices of RFCHR 4.2.3 Multi-Objective Optimal Design 4.3 Multi-Objective Optimization Design for Reliability, Workspace, and Stiffness 4.3.1 Performance Indices of RFCHR 4.3.2 Multi-Objective Optimization Design 4.4 Experiment and Verification 4.5 Conclusions References 5 Kinematic Analysis of Rigid-Flexible Coupling Hoisting Robots with Uncertainty 5.1 Preamble 5.2 Kinematic Uncertainty Analysis with Random Parameters 5.2.1 Mechanism Description 5.2.2 Inverse Kinematics 5.2.3 DACS Equilibrium Equation Under Narrowly Random Model 5.2.4 MHRM For Luffing Angular Response Field of the DACS With Narrow Uncertainty 5.2.5 Numerical examples 5.2.6 Conclusions 5.3 Kinematic Uncertainty Analysis with Interval Variables 5.3.1 Interval Kinematic Equilibrium Equation 5.3.2 Hybrid Compound Function/Subinterval Perturbation Method 5.3.3 Numerical Examples 5.3.4 Conclusions 5.4 Kinematic Uncertainty Analysis Based on Evidence Theory 5.4.1 Architecture and Kinematics 5.4.2 Error Transfer Model 5.4.3 Uncertainty Analysis Based on Evidence Theory 5.4.4 Simulation and Comparison 5.4.5 Conclusions 5.5 Kinematic Uncertainty Analysis with Hybrid Random and Interval Parameters
5.5.1 Hybrid Uncertain DACS With Random and Interval Parameters 5.5.2 The LAR analysis of the DACS with small uncertainty 5.5.3 Hybrid LAR Field Calculation of the DACS 5.5.4 Numerical Examples 5.5.5 Conclusion 5.6 Conclusions References 6 Dynamic Analysis of Rigid-Flexible Coupling Hoisting Robots with Uncertainty 6.1 Preamble154 6.2 Static Uncertainty Analysis with Fuzzy Parameters 6.2.1 Fuzzy Static Equilibrium Equation 6.2.2 CFFPM 6.2.3 MCFFPM 6.2.4 Numerical Examples 6.2.5 Conclusions 6.3 Dynamic Uncertainty Analysis with Hybrid Random and Interval Parameters
6.3.1 LSOAAC Equilibrium Equation Under the Hybrid Uncertain Model 6.3.2 MHUAM for the Dynamic Response Analysis of LSOAAC 6.3.3 Hybrid LSOAAC Response Field Calculation 6.3.4 Numerical Examples 6.3.5 Conclusions 6.4 Conclusions References 7 Trajectory Planning and Tracking Control of Rigid-Flexible Coupling Hoisting Robots 7.1 Preamble 7.2 Trajectory Planning for Rigid-Flexible Coupling Hoisting Robots 7.2.1 Inverse Kinematic Modeling 7.2.2 Dynamic Modeling 7.2.3 Point-To-Point Trajectory Planning 7.2.4 Numerical Simulation and Experiments 7.2.5 Conclusions 7.3 Fuzzy Control for Rigid-Flexible Coupling Hoisting Robots 7.3.1 Fuzzy Trajectory Tracking Control 7.3.2 Numerical Simulations 7.3.3 Experiment Validation 7.3.4 Conclusion 7.4 Force Control for Rigid-Flexible Coupling Hoisting Robots 7.4.1 Construction of Experimental Platform 7.4.2 Cable Driving Force Control Method 7.4.3 Control and Monitoring Program Design 7.4.4 Test and Verification Experiment 7.4.5 Conclusion 7.5 Conclusions References 8 Platform Development and Application for Rigid-Flexible Coupling Hoisting Robots 8.1 Preamble 8.2 Platform Development and Performance Verification of a Rigid-Flexible Coupling Robot for Yard Operations 8.2.1 Physical Prototype Development 8.2.2 Robot Motion Performance Experiment 8.3 Platform Development and Performance Verification for the 7-DOF Rigid-Flexible Coupling Hoisting Robot 8.3.1 Physical Prototype Development 8.3.2 Verification of Decoupling Performance 8.3.3 Overall Performance 8.4 Conclusions References  

最近チェックした商品