Neuro-symbolic AI : Foundations and Applications

個数:
  • 予約
  • ポイントキャンペーン

Neuro-symbolic AI : Foundations and Applications

  • ウェブストア価格 ¥28,745(本体¥26,132)
  • Wiley-IEEE Press(2026/02発売)
  • 外貨定価 US$ 140.00
  • 読書週間 ポイント2倍キャンペーン 対象商品(~11/9)
  • ポイント 522pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 512 p.
  • 言語 ENG
  • 商品コード 9781394302376

Contents

Contents

1. What is Neurosymbolic AI? An Overview and Frontier Problems

1.1. Introduction

1.2. Neurosymbolic Artificial Intelligence

1.3. Frontiers problems

1.4. Conclusion

Bibliography

 

2. Reasoning in Neurosymbolic AI

1.1. What is Reasoning in Neural Networks?

1.2. Background: Logic and Restricted Boltzmann Machines

1.3. Symbolic Reasoning with Energybased Neural Networks

1.4. Logical Boltzmann Machines for MaxSAT

1.5. Integrating Learning and Reasoning in Logical Boltzmann Machines

1.6. Challenges for Neurosymbolic AI

1.7. Conclusion

Bibliography

 

3. Neurosymbolic Assurance Using Concept Probes in Foundation Models

1.1 Introduction

1.2 Neural Features and Concept Probes

1.3 Foundation Models as Specification Lens

1.4 Symbolic Specification of ML Models Using Concept Probes

1.5 Implementation and Evaluation

1.6 Conclusion and Open Challenges

Bibliography

 

4. Towards Assured Autonomy using Neurosymbolic Components and Systems

1.1 Introduction

1.2 Problem Formulation and Challenges: Maneuver Control for Autonomous Vehicles

1.3 Software architecture: Components and Interactions

1.4 Probabilistic World Model

1.5 Planner

1.6 Trajectory Control with Evolving Behavior Trees (EBTs)

1.7 Assurance for Neuro-Symbolic Systems

1.8 Conclusions

Bibliography

 

5. Safe Neurosymbolic Learning and Control

1.1. Problem Setup

1.2. Hamilton-Jacobi (HJ) Reachability

1.3. A NeuroSymbolic Perspective on Learning Safe Controllers

1.4. Safety Assurances for Learned Controllers

1.5. Frontiers, Open Questions, and Promising Directions

Bibliography

 

6. Controllable Generation via Locally Constrained Resampling

1.1. Introduction

1.2. Background

1.3. Locally Constrained Resampling: A Tale of Two Distributions

1.4. Related work

1.5. Experimental Evaluation

1.6. Conclusion and Future Work

Bibliography

Appendix A: Controllable Generation via Locally Constrained Resampling

 

7. Tractable and Expressive Generative Modeling with Probabilistic Flow Circuits

1.1. Introduction

1.2. Tractable Probabilistic Modeling

1.3. Probabilistic Circuits

1.4. Normalizing Flows: A Primer

1.5. Integrating Normalizing Flows and Probabilistic Circuits

1.6. Probabilistic Flow Circuits

1.7. Experiments and Results

1.8. Conclusion and Discussion

Acknowledgements

Bibliography

 

8. Toward Verifiable and Scalable In-context Fine-tuning in Neurosymbolic AI

1.1 Introduction

1.2 Neurosymbolic Fine-tuning Using Automated Feedback from Formal Verification

1.3 Uncertainty-aware Fine-tuning and Inference for Multimodal Foundation Models

1.4 Towards a Hybrid Architecture: Dynamic Interleaving of Neural and Symbolic Reasoning

1.5 Conclusion and Future Directions

Bibliography

 

9. Physics-Informed Deep Learning

1.1 Introduction

Bibliography

 

10. Causal Representation Learning

1.1. Introduction

1.2. Background

1.3. Interventional CRL

1.4. CRL with Linear SCMs

1.5. CRL with General SCMs

1.6. Experiments

1.7. Other approaches

1.8. Summary

Bibliography

 

11. Neuro-symbolic Computing: Hardware-Software Co-Design

1.1 Introduction

1.2 Background

1.3 Trends and Challenges

1.4 Applications and Future Topics

1.5 Conclusions

Bibliography

 

12. Programmatic Reinforcement Learning

1.1. Introduction

1.2. Programmatic RL

1.3. Imitation-Projected Policy Gradients

1.4. Related Work

1.5. Conclusion

Bibliography

 

13. From Symbolic to Neuro-Symbolic Information Extraction

1.1 Motivation and Overview

1.2 An Example of Symbolic Information Extraction

1.3 Problems of Symbolic Information Extraction Systems

1.4 Generating Rules

1.5 Matching Rules

1.6 Take Away

Bibliography

 

14. Neurosymbolic AI for Legal AI-TRISM: Trustworthy, Reliable, Interpretable, Safe Models

1.1 Introduction

1.2 Limitation of using LLM as Legal Assistant

1.3 Neurosymbolic AI for Legal Domain

1.4 AI-TRISM with Neurosymbolic AI

1.5 Symbiosis of LLM and KG for Neurosymbolic RAG in Legal Domain

1.6 Related Work

1.7 Acknowledgement

Bibliography

最近チェックした商品