Modern Power System (Ieee Press Series on Power and Energy Systems)

個数:
  • 予約

Modern Power System (Ieee Press Series on Power and Energy Systems)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 592 p.
  • 言語 ENG
  • 商品コード 9781394289912
  • DDC分類 621.3191

Full Description

Comprehensive reference exploring fundamentals of power systems analysis and operation through a unique blend of traditional and modern concepts

Modern Power System explains the fundamentals of power systems analysis and operation, the latest developments with regard to transformation of energy sources from the conventional synchronous generators to the inverter-based sources, and the techniques and hardware used for this purpose. The book includes information on traditional power system concepts such as load flow, fault studies, protection, and stability as well as modern concepts including reactive power control, Flexible AC Transmission Systems (FACTS), HVDC transmission, renewable energy, and smart grids.

Readers will find insights on topics such as phasor measurement unit (PMUs), wide-area measurements and control, and SCADA systems as well as distribution side aspects such as smart meters, demand management, and energy trading. Readers will also learn about point-to-point HVDC transmission using line commutated converters and multiterminal HVDC transmission.

Additional topics discussed include:

Power system components such as transmission line parameters, transformer models, per-unit representation, and modeling of transmission lines
Economic operation of power plants and systems, with information on unit commitment and automatic generation control
Power system protection through instrument transformers, protective relays, and overcurrent relay coordination
Reactive power compensation, covering voltage stability and ideal reactive compensation
Water, solar, wind, hydrogen, and nuclear fusion as alternative energy sources

Modern Power System is an excellent textbook for undergraduate and graduate students in electrical engineering with a power engineering specialization, as well as practicing power system engineers seeking to keep up with the latest developments in the field.

Contents

Preface xv

About the Author xxi

Acknowledgments xxiii

About the Companion Website xxv

1 Introduction 1

1.1 A Brief History of Electricity 1                                           

1.1.1 The Dawn of Electricity 3

1.1.2 Development of Electrical Power Plant 4

1.2 Interconnection of Electricity Grids 9

1.3 Deregulation 10

1.4 Renewable Energy 13

1.5 Blackouts 15

1.5.1 Power System Oscillations 16

1.6 Smart Grid 18

1.7 Phasor Analysis 20

1.8 Concluding Remarks 21

References 21

2 Power System Components 23

2.1 Transmission Line Parameters 25

2.1.1 Line Resistance 25

2.1.2 Line Inductance 27

2.1.3 Line Charging Capacitance 31

2.2 Synchronous Machine Model 33

2.3 Transformer Model 35

2.4 Per Unit Representation 36

2.5 Modeling Transmission Lines 42

2.5.1 ABCD Parameters 43

2.5.2 Voltage Regulation 44

2.5.3 Short Line Approximation 45

2.5.4 Medium Line π Approximation 45

2.5.5 Medium Line T Approximation 46

2.5.6 Long Line Model 49

2.5.7 Equivalent-π Representation of a Long Line 53

2.5.8 Some Issues with Transmission Lines 55

2.6 Lossless Transmission Lines 56

2.6.1 Traveling Waves 58

2.6.2 Traveling Wave in Single-Phase, Two-Wire Line 60

2.7 Concluding Remarks 64

References 64

Problems 65

3 Power Flow Studies 69

3.1 Formation of Bus Admittance Matrix 70

3.1.1 Without Line Charging Capacitors 70

3.1.2 With Line Charging Capacitors 73

3.2 Load Flow Preliminaries 74

3.2.1 Classification of Buses 76

3.2.2 Data Preparation 77

3.3 Load Flow Methods 79

3.3.1 Gauss-Seidel Load Flow Method 80

3.3.2 Basics of Newton-Raphson Iterative Procedure 83

3.3.3 Newton-Raphson Load Flow Method 85

3.3.4 Fast Decoupled Load Flow 91

3.3.5 Line Flows 96

3.3.6 DC Load Flow 98

3.4 State Estimation 100

3.4.1 Principles of Estimation 100

3.4.2 Maximum-Likelihood Estimation 101

3.4.3 DC State Estimation 104

3.4.4 AC State Estimation 106

3.4.5 Bad Data Detection 110

3.5 SCADA and EMS 114

3.6 Concluding Remarks 115

References 116

Problems 117

4 Economic Operation of Power System 125

4.1 Economic Operation of a Power Plant 126

4.1.1 Economic Distribution of Loads Between Two Units of a Plant 126

4.1.2 Economic Distribution of Loads Between Multiple Units of

a Plant 130

4.1.3 Consideration of Generator Limits 133

4.2 Economic Operation of a Power System 136

4.3 Unit Commitment 141

4.3.1 Spinning Reserve 145

4.3.2 Thermal Limit Constraints 145

4.3.3 Solution Methods for Unit Commitment Problem 146

4.4 Automatic Generation Control 148

4.4.1 Load Frequency Control (LFC) 153

4.4.2 Coordination Between LFC and Economic Operation 155

4.5 Concluding Remarks 156

References 157

Problems 157

5 Power System Fault Analysis 161

5.1 Transients in an RL Circuit 162

5.1.1 DC Source 162

5.1.2 AC Source 164

5.1.3 Fault in an AC Circuit 165

5.2 Short Circuit in an Unloaded Synchronous Generator 167

5.3 Symmetrical Fault in a Power System 170

5.3.1 Calculation of Fault Current Using Impedance Diagram 170

5.3.2 Calculation of Fault Current Using Bus Impedance Matrix 173

5.4 Symmetrical Components 175

5.4.1 Symmetrical Component Transformation 176

5.4.2 Real and Reactive Power 179

5.5 Sequence Circuits and Networks 180

5.5.1 Sequence Circuit for a Y-Connected Load 181

5.5.2 Sequence Circuit for a Delta-Connected Load 183

5.5.3 Sequence Circuit for a Synchronous Generator 186

5.5.4 Sequence Circuit for a Symmetrical Transmission Line 188

5.5.5 Sequence Circuits for Transformers 191

5.5.5.1 Y-Y-Connected Transformer 191

5.5.5.2 Δ-Δ-Connected Transformer 193

5.5.5.3 Y-Δ-Connected Transformer 195

5.5.6 Sequence Networks 196

5.6 Unsymmetrical Faults 198

5.6.1 Single-Line-to-Ground (1LG) Fault 199

5.6.2 Line-to-Line (LL) Fault 202

5.6.3 Double-Line-to-Ground (2LG) Fault 205

5.6.4 Fault Current Computation Using Sequence Networks 208

5.7 Concluding Remarks 216

Reference 216

Problems 216

6 Power System Protection 223

6.1 Protective Elements 224

6.1.1 Fuses 224

6.1.2 Circuit Breakers 226

6.2 Instrument Transformers 228

6.2.1 Current Transformer (CT) 229

6.2.2 Potential Transformer (PT) 230

6.3 Protective Relays 230

6.3.1 Overcurrent Relay 231

6.3.2 Directional Relay 232

6.3.3 Distance Protection 235

6.3.4 Differential Protection 236

6.3.5 Transformer Protection 237

6.3.6 Pilot Relays 239

6.4 Overcurrent Relay Coordination 241

6.5 Zones of Protection 245

6.6 Protection in the Presence of Distributed Renewable Generators 249

6.6.1 Protection Using Directional Overcurrent Relays 250

6.6.2 Inverse Time Admittance (ITA) Relay 252

6.7 IEC 61850 254

6.8 Concluding Remarks 256

References 257

Problems 258

7 Power System Stability and Control 263

7.1 Transient Stability 265

7.1.1 Power-Angle Curve 265

7.1.2 Swing Equation 268

7.1.3 Critical Clearing Angle 271

7.1.4 Critical Clearing Time 276

7.1.5 Simplified Calculation of Critical Clearing Angle 284

7.2 Multimachine System Stability 286

7.2.1 Classical Method 288

7.2.2 Pre-fault Bus Admittance Matrix 289

7.2.3 Reduction of Bus Admittance Matrix 292

7.2.4 Bus Admittance Matrices During Fault and Post-Fault 293

7.2.5 Multimachine Swing Equation 294

7.2.6 Oscillations in a Two-Area System 296

7.3 Excitation Control 298

7.3.1 Linearized Swing Equation 299

7.3.2 Excitation System 303

7.3.3 Automatic Voltage Regulator (AVR) 306

7.3.4 Power System Stabilizer (PSS) 309

7.4 Concluding Remarks 312

References 312

Problems 313

8 Reactive Power Compensation 319

8.1 Voltage Stability 320

8.2 Ideal Reactive Compensation 325

8.3 Ideal Shunt Compensation 326

8.3.1 Improving Voltage Profile 327

8.3.2 Improving Power-Angle Characteristics 332

8.3.3 Improving Stability Margin 334

8.3.4 Power Swing Damping 337

8.3.5 Shunt Compensator Representation 338

8.4 Ideal Series Compensation 340

8.4.1 Impact of Series Compensator on Voltage Profile 340

8.4.2 Improving Power-Angle Characteristics 343

8.4.3 Improving Stability Margin 346

8.4.4 Power Flow Control and Power Swing Damping 346

8.4.5 An Alternate Method of Series Compensation 349

8.5 Concluding Remarks 352

References 352

Problems 353

9 Flexible AC Transmission Systems (FACTS) 357

9.1 Static Var Compensator (SVC) 358

9.1.1 Thyristor-Switched Capacitor (TSC) 358

9.1.2 Thyristor-Controlled Reactor (TCR) 360

9.1.3 Composition of SVC 365

9.1.4 SVC Characteristics 366

9.2 Static Compensator (STATCOM) 368

9.3 High-Power Converters 369

9.3.1 Six-Step Converter 370

9.3.2 Twelve-Step Converter 372

9.3.3 6q-Step Converter 377

9.3.4 Multilevel Converters 377

9.4 Subsynchronous Oscillations 379

9.4.1 Subsynchronous and Supersynchronous Frequencies 380

9.4.2 Shaft Torsional Modes 381

9.4.3 Subsynchronous Frequency Analysis 384

9.4.4 Countermeasures to SSR 388

9.5 Thyristor-Controlled Series Compensator (TCSC) 389

9.5.1 When One of the Thyristors Is On 390

9.5.2 When Both Thyristors Are Off 392

9.5.3 Estimating the Fundamental Impedance of a TCSC 392

9.6 Static Synchronous Series Compensator (SSSC) 396

9.7 Other FACTS Devices 400

9.7.1 Unified Power Flow Controller (UPFC) 400

9.7.2 Thyristor-Controlled Braking Resistor (TCBR) 403

9.7.3 Thyristor-Controlled Voltage Regulator (TCVR) 404

9.7.4 Thyristor-Controlled Phase Angle Regulator (TCPAR) 406

9.8 Concluding Remarks 406

References 407

Problems 409

10 High-Voltage DC (HVDC) Transmission Systems 413

10.1 Attributes of DC Systems 414

10.1.1 Advantages and Disadvantages of HVDC Systems 414

10.1.2 Types of HVDC Systems 415

10.2 LCC-HVDC Systems 417

10.2.1 System Characteristics with Zero Ignition Angle 418

10.2.2 System Characteristics with Nonzero Ignition Angle 419

10.2.3 Overlap Angle 421

10.2.4 Inverter Operation 422

10.2.5 Active Power 423

10.2.6 Twelve-Pulse Converter 425

10.3 VSC-HVDC Systems 425

10.3.1 Control of a Voltage Source Converter (VSC) 426

10.3.2 VSC-HVDC Configuration 427

10.3.3 Direct Control of VSC-HVDC Systems 429

10.3.4 Vector Control of VSC-HVDC Systems 430

10.4 Multiterminal HVDC Systems 434

10.4.1 Multiterminal System Configurations 436

10.4.2 MTDC Control 437

10.5 DC Protection Systems 441

10.6 Concluding Remarks 442

References 443

Problems 444

11 Renewable Energy 447

11.1 Waterpower 448

11.1.1 Hydropower 448

11.1.2 Types of Hydropower Turbines 450

11.1.3 Pumped Hydro Storage (PHS) 450

11.1.4 Tidal Energy 452

11.1.5 Wave Energy 454

11.2 Solar Power 456

11.2.1 Solar Tracking 457

11.2.2 Solar Photovoltaic (PV) Systems 459

11.2.3 Maximum Power Point Tracking (MPPT) 462

11.2.4 Concentrated Solar Power (CSP) 466

11.3 Wind Power 467

11.3.1 Wind Turbine Types 468

11.3.2 Wind Power Calculations 470

11.3.3 Pitch Angle Control 472

11.3.4 Types of Wind Power Collectors 473

11.4 Hydrogen 478

11.4.1 Hydrogen Production 480

11.4.2 Hydrogen Storage and Transmission 482

11.4.3 Utilization of Hydrogen 483

11.5 Nuclear Fusion 484

11.6 Renewable Energy in Power Transmission Systems 486

11.6.1 Grid Forming Converter (GFC) 487

11.6.2 Virtual Synchronous Generator (VSG) 488

11.6.3 Fault Ride Through (FRT) 491

11.7 Renewable Energy in Power Distribution Systems 492

11.7.1 Voltage Rise and Line Loss 493

11.7.2 Reverse Power Flow and Voltage Unbalance 500

11.8 Concluding Remarks 504

References 506

Problems 508

12 Fundamentals of Smart Grid 511

12.1 Sensor Systems 513

12.1.1 Computation of Phasors from Instantaneous Measurements 513

12.1.2 Phasor Measurement Unit (PMU) 517

12.1.3 Smart Meter 519

12.2 Demand Response 520

12.2.1 Controlling Household Appliances 524

12.3 Cybersecurity 526

12.3.1 False Data Injection Attacks 527

12.4 Electric Vehicle (EV) 529

12.4.1 Types of Electric Vehicles 529

12.4.2 EV Charging 532

12.4.3 Wireless Charging 533

12.5 Smart Grid Communications 536

12.5.1 Smart Grid Communication Mediums 536

12.5.2 Communication Requirements 540

12.6 Smart Grid Standards 540

12.7 Smart Distribution Grids 542

12.7.1 Virtual Power Plant (VPP) 542

12.7.2 Microgrid (MG) 544

12.7.3 Microgrid Control 545

12.8 Concluding Remarks 548

References 548

Index 000

最近チェックした商品