Python初心者完全ガイド<br>Unlocking Python : A Comprehensive Guide for Beginners

個数:

Python初心者完全ガイド
Unlocking Python : A Comprehensive Guide for Beginners

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 448 p.
  • 言語 ENG
  • 商品コード 9781394288496
  • DDC分類 005.133

Full Description

A fun and practical guide to learning Python with a special focus on data science, web scraping, and web applications

In Unlocking Python: A Comprehensive Guide for Beginners, veteran software engineer, educator, and author Ryan Mitchell delivers an intuitive, engaging, and practical roadmap to Python programming. The author walks you through the vocabulary, tools, foundational knowledge, and occasional pop-culture references you'll need to hone your skills with this popular programming language.

You'll learn how to install and run Python on your own machine, get up and coding with the language quickly, and best practices for programming both independently and in the workplace. You'll also find:

Key concepts in computer and data science explained from the ground up
Advanced Python topics such as logging, unit testing, multiprocessing, and interacting with databases.
Introductions to some of Python's most popular third-party libraries: Flask, Django, Scrapy, Scikit-Learn, Numpy, and Pandas
Amusing anecdotes from the trenches of industry

Perfect for tech-savvy professionals at any stage of their careers who are interested in diving into Python programming. Unlocking Python is also a must-read for readers who work in a technical role but are interested in getting more directly involved with programming, as well as non-Python programmers who want to apply their technical skill to a new language.

Contents

Part I: Programming

Chapter 1: Introduction to Programming 3

Programming as a Career 4

Myths About Programmers 4

How Computers Work 7

A Brief History of Modern Computing 12

The Unix Operating System 12

Modern Programming 13

Talking About Programming Languages 14

Problem-Solving as a Programmer 17

Chapter 2: Programming Tools 21

Shell 21

Version Control Systems 25

Authenticating with GitHub with SSH Keys 27

Integrated Development Environments 33

Web Browsers 34

Chapter 3: About Python 37

The Python Software Foundation 38

The Zen of Python 39

The Python Interpreter 40

The Python Standard Library 41

Third-Party Libraries 42

Versions and Development 43

Part II: Python

Chapter 4: Installing and Running Python 47

Installing Python 47

Windows 48

macOS 48

Linux 49

Installing and Using pip 50

Windows 51

macOS 51

Linux 51

Installing and Using Jupyter for IPython files 52

Virtual Environments 54

Anaconda 56

Chapter 5: Python Quickstart 59

Variables 59

Data Types 62

Operators 67

Arithmetic Operators 67

Operators and Assignments 69

Comparison Operators 70

Identity Operators 71

Boolean Operators 73

Membership Operators 73

Control Flow 74

If and Else 75

For 76

While 76

Functions 78

Classes 80

Everything Is an Object 82

Data Structures 82

Lists 83

Dictionaries 84

Tuples 86

Sets 86

Exercises 88

Chapter 6: Lists and Strings 91

String Operations 91

String Methods 92

List Operations 95

Slicing 97

List Comprehensions 100

Exercises 103

Chapter 7: Dictionaries, Sets, and Tuples 105

Dictionaries 105

Dictionary Comprehensions 108

Reducing to Dictionaries 110

Sets 112

Tuples 114

Exercises 116

Chapter 8: other Types of Objects 119

Other Numbers 119

Dates 124

Bytes 129

Exercises 132

Chapter 9: Iterables, Iterators, Generators, and Loops 135

Iterables and Iterators 135

Generators 137

Looping with Pass, Break, Else, and Continue 139

Assignment Expressions 143

Walrus Operators 143

Recursion 144

Exercises 148

Chapter 10: Functions 149

Positional Arguments and Keyword Arguments 149

Functions as First-Class Objects 155

Lambda Functions 158

Namespaces 160

Decorators 163

Exercises 168

Chapter 11: Classes 171

Static Methods and Attributes 173

Inheritance 175

Multiple Inheritance 178

Encapsulation 182

Polymorphism 186

Exercises 188

Chapter 12: Writing Cleaner Code 189

PEP 8 and Code Styles 189

Comments and Docstrings 190

Documentation 194

Linting 196

Formatting 199

Type Hints 200

Part III: Advanced Topics

Chapter 13: Errors and Exceptions 207

Handling Exceptions 207
Else and Finally 210

Raising Exceptions 212

Custom Exceptions 214

Exception Handling Patterns 217

Exercises 223

Chapter 14: Modules and Packages 225

Modules 225

Import This 228

Packages 229

Installing Packages 235

Exercises 240

Chapter 15: Working with Files 243

Reading Files 243

Writing Files 247

Binary Files 250

Buffering Data 252

Creating and Deleting Files and Directories 254

Serializing, Deserializing, and Pickling Data 256

Exercises 259

Chapter 16: Logging 261

The Logging Module 261

Handlers 266

Formatting 269

Exercises 272

Chapter 17: Threads and Processes 275

How Threads and Processes Work 275

Threading Module 276

Locking 280

Queues 283

Multiprocessing Module 285

Exercises 292

Chapter 18: Databases 293

Installing and Using SQLite 294

Installing SQLite 294

Using SQLite 296

Query Language Syntax 297

Using SQLite with Python 300

Object Relational Mapping 303

Exercises 306

Chapter 19: Unit Testing 307

The Unit Testing Framework 309

Setting Up and Tearing Down 312

Mocking Methods 314

Mocking with Side Effects 318

Part IV: Python Frameworks

Chapter 20: Rest Apis and Flask 323

HTTP and APIs 323

Getting Started with Flask Applications 327

APIs in Flask 330

Databases 333

Authentication 336

Sessions 338

Templates 342

Chapter 21: Django 345

Installing Django and Starting Django 346

Databases and Migrations 351

Django Admin Interface 353

Models 355

More Views and Templates 358

More Resources 361

Chapter 22: Web Scraping and Scrapy 363

Installing and Using Scrapy 364

Parsing HTML 366

Items 371

Crawling with Scrapy 372

Item Pipelines 376

Chapter 23: Data Analysis with Numpy and Pandas 379

NumPy Arrays 380

Pandas DataFrames 383

Cleaning 387

Filtering and Querying 391

Grouping and Aggregating 393

Chapter 24: Machine Learning with Matplotlib And Scikit-learn 397

Types of Machine Learning Models 398

Exploratory Analysis with Matplotlib 400

Building Supervised Models with Scikit-Learn 409

Evaluating Classification Models with Scikit-Learn 415

Index 421

最近チェックした商品