Emerging Smart Agricultural Practices Using Artificial Intelligence

個数:
電子版価格
¥20,984
  • 電子版あり

Emerging Smart Agricultural Practices Using Artificial Intelligence

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 384 p.
  • 言語 ENG
  • 商品コード 9781394274246
  • DDC分類 630.2086

Full Description

Bring the latest technology to bear in the fight for sustainable agriculture with this timely volume

Artificial intelligence (AI) has the potential to revolutionize virtually every area of research and scientific practice, including agriculture. With AI solutions emerging to drive higher yields, produce increased resource efficiency, and foster sustainability, there is an urgent need for a volume outlining this progress and charting its future course.

Emerging Smart Agricultural Practices Using Artificial Intelligence meets this need with a deep dive into the rapidly developing intersection of agriculture and artificial intelligence. Taking an interdisciplinary approach which applies data science, computer science, and engineering techniques, the book provides cutting-edge insights on the latest advancements in AI-driven agricultural practices. The result is an absolutely critical tool in the ongoing fight to develop sustainable world agriculture.

In addition, this book provides:

Case studies and real-world applications of new techniques throughout
Detailed discussion of agricultural applications for AI-driven technologies such as machine learning, computer vision, and data analytics
A regional approach showcasing international best practices and addressing the varying needs of farmers worldwide

Emerging Smart Agricultural Practices Using Artificial Intelligence is ideal for agricultural professionals and scientists, as well as data scientists, technologists, and agricultural policymakers.

Contents

About the Editors xvii

List of Contributors xix

Preface xxiii

1 Agricultural Resilience: Water Quality and Human Well-Being 1
Tanu Taneja, B.S Bhatia, and Shalom Akhai

1.1 Introduction 1

1.2 The Nexus of Water Quality and Agriculture 2

1.3 Impact of Contaminated Water on Crop Health 2

1.4 AI-Driven Water Monitoring Systems 4

1.5 Research Gaps and Research Dimensions 6

1.6 Precision Irrigation Techniques 7

1.7 Waterborne Pathogens in Farming 8

1.8 Livestock Health and Water Safety 8

1.9 Sustainable Water Management Strategies 9

1.10 Human Health Implications 11

1.11 Significance of Research in Agricultural Water Quality 12

1.12 Conclusion 12

2 Precision Farming: A Technological Revolution for Sustainable Agriculture 25
Ashish Kumar, Prasoon Kumar Pandey, and Divya Singh

2.1 Introduction 25

2.2 Principles of Precision Farming 27

2.3 Technologies in Precision Farming 28

2.4 Role of Drones in Precision Farming 35

2.5 Benefits of Precision Farming 37

2.6 Conclusion 40

3 Precision Farming and Smart Crop Management 45
Bhavin Patel, Jitendra Bhatia, and Malaram Kumhar

3.1 Introduction 45

3.2 Related Work 46

3.3 Technologies in Precision Farming 47

3.4 Smart Crop Management Techniques 58

3.5 Mapping to Site-Specific Applications 59

3.6 Challenges and Limitations 62

3.7 Conclusion 66

4 Empowering Smart Agriculture with Artificial Intelligence 71
Shipra Raheja and Himanshi Bansal

4.1 Introduction 71

4.2 Benefits of AI in Agriculture 72

4.3 Applications of Artificial Intelligence in Agriculture 74

4.4 Part of AI Within the Farming Data Administration Cycle 76

4.5 Optimizing AI for Farming and Agrarian Forms 78

4.6 AI's Limitations with Regard to Agriculture 79

4.7 Future of AI in Agriculture 81

4.8 The Future Research of AI in Small-Scale Farming 82

5 Foundations of Agricultural AI 87
Divya Singh, Naman Agrawal, Jaya Saini, and Manoranjan Kumar

5.1 Introduction 87

5.2 Machine Learning 91

5.3 Deep Learning 91

5.4 Applications of AI in Agriculture 92

5.5 Challenges and Opportunities 94

5.6 Ethical and Social Implications 96

5.7 Current Trends and Future Directions 98

5.8 Conclusion 100

6 AI in Agriculture: A Comprehensive Exploration of Technological Transformation 105
Manya Gupta, Gargi Mishra, Supriya Bajpai, Abhinav Bhardwaj, and Milind Gautam

6.1 Introduction 105

6.2 AI Integration in Agricultural Practices 108

6.3 AI-Monitored Agricultural Parameters 110

6.4 Application Areas of AI in Agriculture 112

6.5 Limitations 120

6.6 Conclusion and Future Scope 124

7 Integrating AI and Climate-Smart Agricultural Mechanization: Strategies for Enhancing Productivity and Sustainability in a Changing Climate 133
Anil Kumar

7.1 Introduction 133

7.2 Literature Review 138

7.3 Methodology 140

7.4 Analysis 142

7.5 Future Mechanization Pathways Through Climate-Smart Technologies 153

7.6 Discussion 157

7.7 Conclusion 158

8 Harvesting Tomorrow: Exploring Real-World Applications of AI in Agriculture 163
Priya and Neha Gupta

8.1 Introduction 163

8.2 Precision Agriculture: Transforming Farming Practices 165

8.3 Crop Monitoring and Management Techniques 171

8.4 Revolutionizing Livestock Management Through AI 174

8.5 Innovations in Food Supply Chains with AI 179

8.6 Addressing Ethical and Regulatory Considerations 182

8.7 Conclusion 184

8.8 Future Directions 185

9 Smart Agriculture: Predictive Modeling of Fertilizer Requirements Using Neural Networks 189
Heet Dave and Jai Prakash Verma

9.1 Introduction 189

9.2 Related Work 190

9.3 Proposed Research Work 194

9.4 Methodology and Concepts 195

9.5 Implementation and Execution flow 197

9.6 Results 204

9.7 Discussion 206

9.8 Conclusion 206

10 Reviewing Advances in Image-Based Plant Disease Detection 209
Gautmi Tomar, Yuvraj Ahuja, Yogita Arora, and Neera Agarwal

10.1 Introduction 209

10.2 Literature Review 212

10.3 Imaging Techniques of Plant Disease 214

10.4 Critical Discussion 223

10.5 Conclusion 225

11 Leveraging ResNeXt50 and LSTM for Enhanced Plant Disease Detection: A Hybrid Model Proposal 231
Jaspreet Singh and Shashi Tanwar

11.1 Introduction 231

11.2 Literature Review 234

11.3 Research Methodology 236

11.4 A Proposed Hybrid Model Using ResNext50 & LSTM for Plant Disease Detection 240

11.5 Results and Implementation 241

11.6 Conclusion and Future Work 243

12 FarmTechAI: Artificial-Intelligence-Based Modern Farmer Management System 247
Murat Can Cardak, Muhammed Golec, and Sukhpal Singh Gill

12.1 Introduction 247

12.2 Related Works 248

12.3 FarmTechAI: Proposed System 251

12.4 Performance Evaluation and Testing 271

12.5 Legal, Social, Ethical, and Sustainability Issues 277

12.6 Conclusions and Future Work 278

13 Livestock Monitoring and Welfare 283
V. Kanakaris, E. Vrochidou, and G. A. Papakostas

13.1 Introduction 283

13.2 Benefits of Livestock Monitoring 287

13.3 Innovative Livestock Monitoring Technology Methods 288

13.4 Impact of Livestock Monitoring Methods on Welfare 298

13.5 Discussion 300

13.6 Conclusions 302

14 Smart Crop Management: Harnessing Green IoT Tomorrow 315
Shipra Raheja, Vimal Gaur, and Rachna Jain

14.1 Introduction 315

14.2 Greening Agriculture: Advancing with IoT Technology 316

14.3 Green IoT Key Components 318

14.4 Future of AI in Agriculture 324

14.5 Conclusion and Future Aspects 324

15 Current Progress of Sustainable Smart Agriculture Using Internet of Things 329
Savita Kumari Sheoran, Suraj Ranga, and Ghanapriya Singh

15.1 Introduction 329

15.2 Literature Review 331

15.3 Methodology 339

15.4 Current Status of SDGs (Global and Local) in Ranking 343

15.5 Analysis 344

15.6 Conclusions 346

Funding 346

References 346

Index 353

最近チェックした商品