恒星天体物理学入門(第2版)<br>An Introduction to Stellar Astrophysics (2ND)

個数:
  • 予約

恒星天体物理学入門(第2版)
An Introduction to Stellar Astrophysics (2ND)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 350 p.
  • 言語 ENG
  • 商品コード 9781394251797

Full Description

Accessible and student-friendly textbook on the astrophysics of stars, now with new observational data and physical concepts

An Introduction to Stellar Astrophysics is a concise textbook containing core content on and detailed examples of stellar physics and stellar astronomy. This new edition is revised and expanded and contains updated and new sections on nearest and brightest stars, the dynamics of double stars, the classification of binary stars, Wolf Rayet stars, and stellar remnants such as white dwarfs.

The book is divided in seven chapters: basic concepts, stellar formation, radiative transfer in stars, stellar atmospheres, stellar interiors, nucleosynthesis and stellar evolution, and chemically peculiar stars and diffusion. Student-friendly features include detailed examples, exercises with selected solutions, brief recalls of the most important physical concepts, chapter summaries, and optional and advanced sections that can be skipped on first reading.

A large number of graphs and figures are included to better explain the concepts covered. Only essential astronomical data are given, and the amount of observational results shown is deliberately limited in scope.

An Introduction to Stellar Astrophysics includes information on:

The electromagnetic spectrum, blackbody radiation, luminosity, effective temperature, the Boltzmann and Saha equations, and the Hertzsprung-Russell diagram
Hydrostatic equilibrium, the Virial theorem, the Jeans criteria, free-fall times, and pre-main-sequence evolution
Radiative opacities, specific intensity and radiative moments, local thermodynamic equilibrium, and radiative transfer at large optical depths
Energy transport in stars, polytropic models, advanced nuclear burning, and novae and supernovae
Diffusion theory, radiative accelerations, and other transport processes
New to this edition: sections on nearest and brightest stars, the dynamics of double stars, the classification of binary stars, Wolf Rayet stars and stellar remnants such as white dwarfs

Delivering intermediate knowledge on stars in a concise format, An Introduction to Stellar Astrophysics is an excellent textbook on the subject for advanced undergraduate and graduate students studying physics and astrophysics.

Contents

Contents

Preface              xi

Acknowledgments     xiii

Chapter 1: Basic Concepts   1

1.1 Introduction           1

1.2 The Electromagnetic Spectrum 3

1.3 Blackbody Radiation        5

1.4 Luminosity, Effective Temperature, Flux and Magnitudes        8

1.5 Boltzmann and Saha Equations                13

1.6 Spectral Classification of Stars 21

1.7 The Hertzsprung-Russell Diagram          27

1.8 Nearest and Brightest Stars

1.9 Summary              30

1.10 Exercises            31

Chapter 2: Stellar Formation               35

2.1 Introduction           35

2.2 Hydrostatic Equilibrium 36

2.3 The Virial Theorem             40

2.4 The Jeans Criterion            46

2.5 Free-Fall Times† 52

2.6 Pre-Main-Sequence Evolution† 54

2.7 Summary 57

2.8 Exercises 57

Chapter 3: Radiative Transfer in Stars            61

3.1 Introduction           61

3.2 Radiative Opacities           62

3.2.1 Matter-Radiation Interactions               62

3.2.2 Types of Radiative Opacities   64

3.3 Specific Intensity and Radiative Moments         69

3.4 Radiative Transfer Equation         77

3.5 Local Thermodynamic Equilibrium         81

3.6 Solution of the Radiative-Transfer Equation      82

3.7 Radiative Equilibrium       90

3.8 Radiative Transfer at Large Optical Depths        91

3.9 Rosseland and Other Mean Opacities 94

3.10 Schwarzschild-Milne Equations††       97

3.11 Demonstration of the Radiative-Transfer Equation† 99

3.12 Radiative Acceleration of Matter and Radiative Pressure†    100

3.12.1 Radiative Acceleration of Matter       100

3.12.2 Radiative Pressure      103

3.13 Summary              104

3.14 Exercises               105

Chapter 4: Stellar Atmospheres        109

4.1 Introduction           109

4.2 The Grey Atmosphere      110

4.2.1 The Temperature Profile in a Grey Atmosphere           111

4.2.2 Radiative Flux in a Grey Atmosphere††            117

4.3 Line Opacities and Broadening 119

4.3.1 Natural Broadening       120

4.3.2 Doppler Broadening     122

4.3.3 Pressure Broadening    130

4.3.4 Stimulated Emission and Masers        132

4.3.5 Einstein Coefficients††               134

4.4 Equivalent Width and Formation of Atomic Lines          137

4.4.1 Equivalent Width            137

4.4.2 Formation of Weak Atomic Lines         139

4.4.3 Curve of Growth†           142

4.5 Atmospheric Modelling  143

4.5.1 Input Data and Approximations            143

4.5.2 Algorithm for Atmospheric Modelling††           145

4.5.3 Example of a Stellar Atmosphere Model         148

4.5.4 Temperature-Correction Procedure††              150

4.6 Types of Binary Stars†

4.7 Summary              151

4.8 Exercises               152

Chapter 5: Stellar Interiors    155

5.1 Introduction           155

5.2 Equations of Stellar Structure    156

5.2.1 Hydrostatic Equilibrium Equation       156

5.2.2 Equation of Mass Conservation            156

5.2.3 Energy-Transport Equation       159

5.2.4 Equation of Energy Conservation         160

5.2.5 Other Ingredients Needed        161

5.3 Energy Transport in Stars               163

5.3.1 Monochromatic Radiative Flux in Stellar Interiors    164

5.3.2 Conduction        166

5.3.3 Convection         167

5.3.3.1 General Description of Convection                167

5.3.3.2 The Schwarzschild Criterion for Convection†          168

5.3.3.3 The Mixing-Length Theory††                172

5.3.3.4 Convective Equilibrium†       176

5.4 Polytropic Models               176

5.5 Structure of the Sun          182

5.6 Equation of State                184

5.6.1 Introduction       184

5.6.2 The Ideal Gas    185

5.6.3 Degeneracy        189

5.6.4 Radiation Pressure        191

5.7 The Eddington Limit

5.87 Variable Stars and Asteroseismology 191

5.87.1 Variable Stars                 191

5.87.2 Asteroseismology†     197

5.87.3 Basic Physics Behind Period-Luminosity Relations†           200

5.9 Summary              202

5.10 Exercises            203

Chapter 6: Nucleosynthesis and Stellar Evolution                205

6.1 Introduction           205

6.2 Generalities Concerning Nuclear Fusion            206

6.3 Models of the Nucleus† 211

6.3.1 The Liquid-Drop Model               211

6.3.2 The Shell Model               214

6.4 Basic Physics of Nuclear Fusion               216

6.5 Main-Sequence Burning                 218

6.5.1 Proton-Proton Chains                 220

6.5.2 CNO Cycles       221

6.5.3 Lifetime of Stars on the Main Sequence          224

6.5.4 The Solar Neutrino Problem† 226

6.6 Helium-Burning Phase    230

6.7 Advanced Nuclear Burning           232

6.7.1 Carbon-Burning Phase               233

6.7.2 Neon-Burning Phase    234

6.7.3 Oxygen-Burning Phase                234

6.7.4 Silicon-Burning Phase                 235

6.8 Evolutionary Tracks in the H-R Diagram              236

6.8.1 Generalities       236

6.8.2 Evolution of Low-Mass Stars (M* _≤ 0.5 M⊙_)            240

6.8.3 Evolution of a 1 M_ Star: Our Sun         241

6.8.4 Evolution of Massive Stars (M* _≥ 10 M_⊙) 245

6.9 Stellar Evolution Modelling†

6.10 Stellar Clusters               248

6.10.1 Stellar Populations, Galaxies and the Milky Way 248

6.10.2 Open Clusters            251

6.10.3 Globular Clusters                     252

6.10.4 Age of Stellar Clusters           253

6.10.5 Distance to Stars and Stellar Clusters        255

6.11 Stellar Remnants 257

6.11.0.1 White Dwarfs 257

6.11.2 Neutron Stars, Pulsars and Magnetars 259

6.11.3 Black Holes 262

6.12 Novae and Supernovae† 268

6.13 Heavy Element Nucleosynthesis: s, r and p Processes† 273

6.13.1 The Slow and Rapid Processes 273

6.13.2 The p Process 276

6.14 Nuclear Reaction Cross Sections and Rates†† 277

6.15 Summary 281

6.16 Exercises 281

Chapter 7: Chemically Peculiar Stars and Diffusion† 285

7.1 Introduction and Historical Background 285

7.2 Chemically Peculiar Stars 287

7.2.1 Am Stars 288

7.2.2 Ap Stars 288

7.2.3 HgMn Stars 289

7.2.4 He-Abnormal Stars 289

7.3 Atomic Diffusion Theory†† 290

7.4 Radiative Accelerations†† 297

7.5 Other Transport Mechanisms†† 302

7.5.1 Light-Induced Drift 303

7.5.2 Ambipolar Diffusion of Hydrogen 304

7.6 Summary 305

7.7 Exercises 305

Answers to Selected Exercises          307

Appendix A: Physical Constants       309

Appendix B: Units in the cgs and SI Systems            311

Appendix C: Astronomical Constants           313

Appendix D: Ionisation Energies (in eV) for the First Five Stages of Ionisation for the Most Important Elements          315

Appendix E: Solar Abundances for the Most Important Elements              317

Appendix F: Atomic Masses 319

Appendix G: Physical Parameters for Main-Sequence Stars           321

Appendix H: Periodic Table of the Elements              323

References      325

Bibliography   327

Index    329

最近チェックした商品