Microbial Nutraceuticals : Products and Processes

個数:
  • 予約
  • ポイントキャンペーン

Microbial Nutraceuticals : Products and Processes

  • ウェブストア価格 ¥38,206(本体¥34,733)
  • John Wiley & Sons Inc(2025/08発売)
  • 外貨定価 US$ 195.00
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 1,735pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 496 p.
  • 言語 ENG
  • 商品コード 9781394241507

Full Description

An exploration of the latest advances in the application of microbial nutraceuticals in healthcare, food production, and agriculture

In Microbial Nutraceuticals: Products and Processes, a team of distinguished researchers delivers an up-to-date and authoritative discussion of the recent advances in the application of microbial nutraceuticals and their implementation in the health, food, and agriculture sectors. The book begins with an overview of microbial nutraceuticals before moving on to discussions of more specific topics, including microbial cell factories for the production of essential amino acids, microbial production of dietary short-chain fatty acids, and microbial sources for bioactive peptides conferring health benefits.

Readers will also find:

A thorough introduction to symbiotic products with nutraceutical impact
Comprehensive explorations of postbiotic supplements with nutraceutical significance
Practical discussions of microbial production of carotenoids
Complete treatments of microbial engineering for multivitamin production

This book is intended for academics, scientists, and researchers working in the field of microbial nutraceuticals. Additionally, it will benefit professionals working in the agri-biotech industries, as well as graduate and post-graduate students with an interest in the subject.

Contents

About the Editors xv

Preface xvii

1 Microbial Nutraceuticals: An Overview 1
Ashish Kumar Singh, Santosh Kumar Upadhyay, and Sudhir Pratap Singh

1.1 Introduction 1

1.1.1 Overview of Microbial Nutraceuticals 1

1.2 Microbial Production of Nutrients 2

1.2.1 Microbial Amino Acid and Peptide Production 2

1.2.2 Dietary Short- Chain Fatty Acid Production 3

1.3 Oligosaccharide Production 3

1.3.1 Prebiotic Oligosaccharide Molecule Production in Microbial Cells 3

1.3.2 Microbial Transformation and Bio- production of High- Value Rare Functional Sugars: Sources, Methods, and Safety Aspects 4

1.3.3 Microbial Production of High- Value Polyphenolics 5

1.3.4 Specialized Carbohydrate Production 5

1.3.5 Polymeric Nutraceuticals 6

1.4 Advanced Nutraceutical Products and Processes 6

1.4.1 Functional Nutraceutical Products 6

1.4.2 Specialized Nutrient Molecules 8

1.5 Safety and Regulatory Aspects 10

1.6 Alternative Sources 10

Acknowledgements 11

References 11

2 Microbial Cell Factories for the Production of Essential Amino Acids 23
Susana Calderón- Toledo, César Salcedo- Okuma, and Amparo Iris Zavaleta

2.1 Introduction 23

2.2 Essential Amino Acid Biosynthesis 24

2.2.1 Methionine 24

2.2.2 Valine 25

2.2.3 Tryptophan 27

2.2.4 Phenylalanine 28

2.2.5 Lysine 29

2.2.6 Leucine 30

2.2.7 Threonine 31

2.2.8 Isoleucine 33

2.2.9 Histidine 34

2.3 Fermentation Strategies 34

2.4 Perspectives and Challenges 35

References 36

3 Microbial Production of Dietary Short- Chain Fatty Acids 45
Alexandra Wallimann

3.1 Background 45

3.2 SCFA Generation and Its Producing Microbes 46

3.2.1 Acetate 46

3.2.2 Propionate 46

3.2.3 Butyrate 46

3.2.4 Valerate 47

3.2.5 Formate 47

3.3 Mechanism of Actions 48

3.4 Impact on Host Health 48

3.5 Potential of SCFAs as Therapeutics 49

3.6 Conclusions and Perspectives 50

References 50

4 Microbial Sources for Bioactive Peptides Conferring Health Benefits 55
Amin Abbasi, Hadi Pourjafar, Hamideh Fathi Zavoshti, Sara Bazzaz, Parmis Mirzaei, Elham Sheykhsaran, and Hedayat Hosseini

4.1 Introduction 55

4.2 Overview of Bioactive Peptides 56

4.3 Production and Processing of Bioactive Peptides 58

4.3.1 Enzymatic Hydrolysis 58

4.3.2 Microbial Fermentation 59

4.4 The Role of LAB Proteolytic Systems in the Liberation of Bioactive Peptides 60

4.5 Purification and Identification 61

4.6 Promising Health- Promoting Effects 62

4.6.1 Hypocholesterolemic and Hypolipidemic Effects 62

4.6.2 Antithrombotic Effect 63

4.6.3 Antihypertensive Activity 63

4.6.4 Mineral- Binding Activity 65

4.6.5 Opiate- Like Activity 65

4.7 The Impact of Processing Procedures on the Bioactivity of Peptides 66

4.8 Possible Bioactive Peptide Applications 67

4.9 One Advancement Over Linear Peptides with Cyclic Peptides 68

4.10 Computer- based Methods for Peptide Research Utilization 69

4.11 Challenges in Bioactive Peptide Development 70

4.12 Conclusions and Future Perspectives 70

References 71

5 Prebiotic Oligosaccharide Production in Microbial Cells 81
Avijeet S. Jaswal, Saroj Mishra, and R. Elangovan

5.1 Oligosaccharides as Prebiotics 81

5.2 Structural Diversity of Prebiotic Oligosaccharides and Mechanism of Action 82

5.2.1 Structures of Various Existing and Emerging Prebiotics 83

5.2.1.1 Galactooligosaccharides 83

5.2.1.2 Fructooligosaccharides 83

5.2.1.3 Chitooligosaccharides 84

5.2.1.4 Malto- and Isomaltooligosaccharides 84

5.2.1.5 Mannooligosaccharides 84

5.2.1.6 Raffinose Family Oligosaccharides 84

5.2.1.7 Xylooligosaccharides 85

5.2.2 General Mechanisms of Action of Prebiotics 85

5.3 Enzymes Involved in the Production of GOSs and FOSs 88

5.4 Microbial Systems for the Synthesis of GOSs and FOSs 90

5.4.1 Production of GOSs Using Bacterial and Fungal Systems 91

5.4.2 Production of FOSs Using Bacterial and Fungal Systems 93

5.4.2.1 FOSs Production in Bacterial Systems 94

5.4.2.2 FOSs Production in Fungal Systems 95

5.5 Novel Prebiotic Oligosaccharides 97

5.5.1 Pectic Oligosaccharides 97

5.5.2 Resistant Starch 98

5.5.3 Polydextrose 98

5.5.4 Polyphenols and Flavanols 98

5.5.5 Lactulose 99

5.5.6 Human Milk Oligosaccharides 99

5.5.7 Synbiotics 99

5.5.8 Mushrooms 100

5.6 Future Perspectives 100

References 101

6 Bio- production of Rare Sugars, Applications, Safety, and Health Benefits 115
Sweety Sharma, Satya Narayan Patel, Suresh D. Pillai, Jyoti Yadav, and Sudhir Pratap Singh

6.1 Introduction 115

6.2 d-Allulose 115

6.2.1 Physiological Functions and Health Benefits 117

6.2.1.1 Anti- obesity and Antidiabetic Effects 119

6.2.1.2 Anti- hyperlipidemic Effects 119

6.2.1.3 Anti- inflammatory and Antioxidative Effects 119

6.3 d- Allose 119

6.3.1 Physiological Functions and Health Benefits 120

6.3.1.1 Anticancer and Antitumor Properties 120

6.3.1.2 Antioxidant Properties 122

6.3.1.3 Anti- inflammatory Effects 122

6.3.1.4 Cryoprotective, Immunosuppressive, and Other Characteristics 122

6.3.1.5 Sweetener and Food Additive 122

6.3.1.6 Benefits of d- Allose in Plants 122

6.4 Trehalose 122

6.4.1 Physiological Functions and Health Benefits 123

6.4.1.1 Cryopreservation 123

6.4.1.2 Blood Sugar and Insulin Response 125

6.4.1.3 Regulation of Glucose Homeostasis and Lipid Metabolism 125

6.4.1.4 Antioxidant and Anti- inflammatory Effects 125

6.4.1.5 Gut Microbiome Modulation 125

6.4.1.6 Dental Health and Weight Management 125

6.4.1.7 Stress Regulator in Plants 126

6.5 d- Tagatose 126

6.5.1 Physiological Functions and Health Benefits 127

6.5.1.1 Oral Health 127

6.5.1.2 Prebiotic and Systemic Health 127

6.5.1.3 Antiaging 128

6.5.1.4 d- Tagatose Restricts Plant Pathogen 128

6.6 d- Talose 128

6.7 Turanose 129

6.7.1 Physiological Functions 129

6.7.1.1 Blood Sugar Control and Weight Management 129

6.7.1.2 Anti- inflammatory Properties 129

6.7.1.3 Prebiotic Effects 129

6.7.1.4 Gut and Dental Health 130

6.7.1.5 Pathogen Detection 130

6.7.1.6 Honey Authentication 131

6.7.1.7 Food Processing and Osmoprotection 131

6.8 Conclusion 131

References 131

7 Microbial Engineering for the Production of High- value Polyphenolics 145
Deepak Sharma, Shweta Kamboj, Maninder Jeet Kaur, Ranju Kumari Rathour, and Nitish Sharma

7.1 Introduction 145

7.2 Properties and Classification of Polyphenols 146

7.2.1 Phenolic Acid 147

7.2.2 Flavonoids 148

7.2.3 Non- flavonoids 148

7.3 Sources of Polyphenols 148

7.3.1 Plant as a Source for Polyphenols 149

7.3.2 Microbes as Polyphenol Source 149

7.4 Metabolic Engineering of Bacteria for Polyphenol Production 152

7.4.1 Genetic Engineering Approach for Polyphenol Production in Bacteria 153

7.4.2 Genetic Engineering of Fungi for Polyphenol Production 154

7.5 Model Organisms for Polyphenol Production 155

7.5.1 Yeast 156

7.5.2 Escherichia coli 157

7.5.3 Corynebacterium Glutamicum 157

7.6 Examples of Some Important Polyphenols Produced in E. coli 157

7.7 Conclusion and Future Directions 158

References 158

8 Microbial Approaches for Lactose Transformation into High- value Rare Sugars 167
Ashutosh Kumar Singh, Amit Kumar Rai, and Sudhir Pratap Singh

8.1 Introduction 167

8.2 Lactose- derived Rare Sugar Production Through Microbial Approach 168

8.2.1 Lactosucrose 168

8.2.2 Tagatose 169

8.2.3 Lactulose 173

8.2.4 Epilactose 174

8.3 Conclusion 176

Acknowledgements 176

References 176

9 Engineering Microbial Pathways for the Production of 2'- Fucosyllactose 183
Vijaya Bharathi Srinivasan, Balvinder Singh, and Govindan Rajamohan

9.1 Introduction 183

9.1.1 Human Milk Oligosaccharides (HMOs) 183

9.1.2 Biological Properties and Functions of 2'- FL 184

9.2 Human Milk Microbiome 185

9.2.1 Chemical Synthesis of 2'- FL 185

9.2.2 Enzymatic Synthesis of 2'- FL 186

9.2.3 Biological Production of 2'- FL Through Genetic Engineering Strategies 187

9.2.4 Engineering Gram- Negative Bacterial Host [Escherichia coli] for 2'- FL Production 187

9.2.5 Engineering Gram- Positive Bacterial Host for 2'- FL Production 189

9.2.6 Engineering Yeast for 2'- FL Production 189

9.2.7 Global Regulatory Approval, Commercialization, Market Value, and Application of 2'- FL 190

9.3 Challenges or Future Outlook 191

9.4 Conclusion and Perspectives 192

Acknowledgement 193

References 193

10 Microbial Production of Human Milk Oligosaccharides (HMOs) 197
Prakram Singh Chauhan, Tripti Dadheech, and Arunika Saxena

10.1 Introduction 197

10.2 Type and Structure of HMOs 198

10.3 Different Methods for HMO Production 200

10.3.1 Chemical Synthesis 200

10.3.2 Enzymatic Synthesis (Chemoenzymatic HMO Synthesis) 203

10.3.2.1 Glycosyltransferase 203

10.3.2.2 Glycosidase 205

10.3.3 Microbial Cell Factories (Whole- Cell Reaction Method) 206

10.3.3.1 2'- Fucosyllactose 208

10.4 Strategies for Enhanced HMO Production 211

10.4.1 Designing Cell Factories for Commercial Synthesis 212

10.4.2 Modification of Metabolic Pathway 212

10.4.2.1 Exploitation of Lactose Substrate for Producing HMOs 212

10.4.2.2 Engineering of GDP- l- Fucose Pool Occurring Inside a Cell 212

10.4.2.3 Transferase Expression and Engineering 213

10.4.2.4 Exporting Product Outside Cell 213

10.4.3 Process of Fermentation and Scaling- up 213

10.4.4 Quality of the Product and Downstream Processes 214

10.5 Purification Methods 214

10.6 Global Demand and Recent Market Aspects of HMOs 215

10.6.1 HMOs' Market Segmental Analysis 216

10.6.2 HMO Market Analysis by Product 216

10.6.3 HMOs' Market Regional Analyzes None 217

10.6.4 Factors Affecting the HMOs' Market 217

10.6.5 Dairy Oligosaccharide Industry Restrictions 217

10.6.6 Competition Landscape of the Global Human Milk Oligosaccharides' (HMOs') Market 217

10.6.7 Latest Trends in the HMO Market 218

10.6.8 Highlights of Global HMOs' Market 218

10.7 Applications of HMOs 218

10.7.1 Functions of HMOs 219

10.7.2 Involvement of HMOs as if Prebiotics 219

10.7.3 Antiadhesive and Antimicrobial Characteristics of HMOs 220

10.7.4 HMO's Impact on Intestinal Epithelial Cells 221

10.7.5 HMO's Influence on Immune Cells 221

10.8 Conclusion and Future Outlook 221

References 222

11 Beta (β)- glucan as Microbial Polymer with Nutraceutical Potential: Chemistry, Biosynthesis, Extraction, Identification, and Industrial Production of Bioactive Compound for Human Health 231
Pawan Prabhakar, Deepak Kumar Verma, and Mamoni Banerjee

11.1 Introduction 231

11.2 Classification, Chemistry, and Biosynthesis of β- glucan 233

11.2.1 Biosynthesis of β- glucan in Bacteria 234

11.2.2 Biosynthesis of β- glucan in Fungi 235

11.2.3 Biosynthesis of β- glucan in Microalgae 235

11.3 Extraction, Isolation, and Identification of β- glucan from Microbial Source 236

11.4 Biotechnological Process for the Production of β- glucan from Microbes 239

11.4.1 Bacteria 239

11.4.2 Fungi 240

11.4.3 Microalgae 243

11.5 Pharmacological and Nutritional Properties of β- glucan 243

11.5.1 Anticancerous 243

11.5.2 Antihyperglycemic Effect 244

11.5.3 Antihypercholesterolemic and Anti- obesity 245

11.5.4 Antioxidant Activity 246

11.5.5 Immunomodulatory Activities 246

11.5.6 Antimicrobial Activity 246

11.6 Future Prospective β- glucan as Microbial Nutraceuticals 247

11.7 Concluding Remarks 248

Contribution of Authors 248

Conflict of Research Interests 248

References 248

12 Multifaceted Role of Synbiotic Products with Nutraceutical Impact 257
Mariana Buranelo Egea, Josemar Gonçalves de Oliveira Filho, and Ailton Cesar Lemes

12.1 Introduction 257

12.2 Beneficial Effects and Selection Criteria 258

12.2.1 Beneficial Effects 258

12.2.2 Selection Criteria of Prebiotic, Probiotic, and Synbiotics 259

12.3 Human Synbiotic Types 260

12.3.1 Main Prebiotics for Human Consumption 261

12.3.2 Main Probiotics for Human Consumption 262

12.3.3 Main Combinations of Probiotics and Prebiotics in Synbiotic Products 263

12.4 Mechanism of Action of Synbiotics 263

12.5 Action of Synbiotics in Humans 264

12.6 Final Considerations 267

Acknowledgment 268

References 268

13 Postbiotic Supplements with Nutraceutical Significance 273
Amin Abbasi, Hedayat Hosseini, Hadi Pourjafar, Leili Aghebati Maleki, Atiyeh Ghafouri Ghotbabad, Sahar Sabahi, Parvin Orojzade, and Mohammadreza Ziavand

13.1 Introduction 273

13.2 Biological Actions of Postbiotics 274

13.2.1 In Vitro Investigations of Bioactivities 274

13.2.2 In Vivo Investigation of Bioactivities 278

13.2.2.1 Infection Prevention 280

13.2.2.2 Infection of Enteric 280

13.2.2.3 Allergic Reactions 281

13.2.2.4 Infections of Respiratory Tract 282

13.2.2.5 Gastroenteritis 282

13.2.2.6 Further Clinical Applications 283

13.2.3 Postbiotics in Childhood 284

13.2.3.1 Principal Applications of Postbiotics in Children 284

13.2.3.2 Postbiotics for the Health of Newborns and Premature Infants 286

13.3 Gut Dysbiosis Therapy Based on Mineral- Enriched Postbiotics 286

13.4 Promising Use of Postbiotics in the Medical or Pharmaceutical Sectors 289

13.5 Safety Regulations and Terminology Challenges 291

13.6 Conclusion 293

References 293

14 Innovative Approaches for the Microbial Production of Carotenoids 301
Rajni Kumari, Monika, V Vivekanand, and Nidhi Pareek

14.1 Introduction to Microbial Carotenoid Production 301

14.2 Carotenoids: A Structure- based Approach to Biosynthesis 303

14.3 Microbial Sources of Carotenoid Production 305

14.4 Factors Affecting Microbial Production of Carotenoid 306

14.5 Approaches for Enhancement of Carotenoid Production 307

14.5.1 Metabolic Pathway Engineering 309

14.5.2 Gene Overexpressing and Knockout 310

14.5.3 Fed- Batch and Continuous Fermentation 311

14.5.4 Consortia Engineering 311

14.5.5 CRISPR- Cas Genome Editing 312

14.5.6 Stress Induction 312

14.5.7 Directed Evolution 313

14.6 Fermentation Processes, Bioreactor Design, and Downstream Processing 313

14.7 Applications of Microbial Carotenoids 314

14.7.1 Nutraceutical and Pharmaceutical Applications 314

14.7.2 Food Coloring and Cosmetic Industry 315

14.7.3 Antioxidant Properties and Health Benefits 315

14.8 Challenges and Future Perspectives 315

14.9 Conclusion 316

References 316

15 Exploring the Chemistry and Sources of Microbial 1,2- Propanediol [Propylene glycol] with a Focus on Biosynthesis, Extraction, and Identification for Nutraceutical Significance and Human Health 325
Alaa Kareem Niamah, Shayma Thyab Gddoa Al- Sahlany, Deepak Kumar Verma, Amit Kumar Singh, Manish Kumar Singh, Rakesh Mohan Shukla, Smita Singh, Ami R. Patel, Gemilang Lara Utama, Mónica L. Chávez González, José Sandoval- Cortés, Prem Prakash Srivastav, and Cristobal Noe Aguilar

15.1 Introduction 325

15.2 Structure and Chemistry of Microbial 1,2- Propanediol 327

15.3 Sources and Synthesis of 1,2- Propanediol 329

15.3.1 Sources of Microbial 1,2- Propanediol 329

15.3.2 Synthesis of 1,2- Propanediol 329

15.3.2.1 Chemical Production 329

15.3.2.2 Microbial Production 331

15.3.2.3 Deployed Biochemical Pathways for Synthesis 333

15.4 Extraction, Identification, and Characterization Process 334

15.5 Nutraceutical Importance and Human Health 338

15.6 Prospective Future and Research Opportunities 340

15.7 Concluding Remarks 342

References 343

16 Innovations in the Production of Multivitamins in Microbial Factories 349
Nupur, Mohit Kumar, Aditi Singh, Neeraj Agarwal, Narendra Kumar, and Santosh Kumar Mishra

16.1 Introduction 349

16.1.1 Overview and Classification of Multivitamins 350

16.1.2 Definition and Need of Microbial Factories 350

16.2 Microbial Factories for Multivitamin Production 350

16.2.1 Role of Microbial Factories in Vitamin Synthesis 353

16.2.2 Advantages of Using Microbial Factories 353

16.2.3 Types of Microorganisms Used in Multivitamin Production 354

16.3 Innovations in Multivitamin Production 354

16.3.1 Genetic Engineering Techniques for Enhanced Vitamin Synthesis 354

16.3.2 Optimization of Fermentation Processes 359

16.3.3 Novel Approaches for Vitamin Extraction and Purification 359

16.3.4 Advances in Encapsulation and Delivery Systems 360

16.4 Current Scenario and Future Prospects 360

References 360

17 An Overview of GABA Production by Microorganisms 365
Hend Altaib, Mahmoud A. M. El- Nouby, and Yassien Badr

17.1 Introduction 365

17.2 Chemical Structure and Biosynthesis of GABA 366

17.3 Physiological and Biological Functions of GABA for Microorganisms and Carrier Hosts 366

17.3.1 Role in Microorganisms 366

17.3.2 Role of Microbial GABA for the Carrier Host 369

17.3.3 Role of GABA in Plants 369

17.4 Applications for GABA 370

17.5 Critical Parameters for Enhanced Microbial GABA Production from Microorganisms 372

17.5.1 Optimizing Fermentation Process (Type of Fermentation- Substrate- pH) 372

17.5.1.1 The Effect of Media Additives and Fermentation- Substrate 378

17.5.1.2 The Effect of pH 378

17.5.1.3 Temperature Influence 379

17.5.1.4 Cultivation Time Impact 380

17.5.2 Methodology of Design of Experiments (DOE) 380

17.5.3 Genetic Engineering 381

17.5.4 Physiology- oriented Engineering 382

17.5.5 Co- culture Engineering 383

17.6 Models of Engineered GABA Producer Organisms 383

17.6.1 Corynebacterium 383

17.6.2 Lab 384

17.6.3 Bifidobacterium 385

17.6.4 E. coli 386

17.7 Conclusion 386

Abbreviations 387

References 387

18 Promising GRAS Strains for Production of Nutraceuticals 399
Sanjay Kala, Shashank Singh, Chayanika Kala, and Anurag Singh

18.1 Introduction 399

18.1.1 Nutraceuticals 399

18.1.2 Generally Regarded As Safe (GRAS) Strains 400

18.1.3 Lactobacillus Strains 400

18.1.4 Bifidobacterium Strains 401

18.1.5 Saccharomyces Species 402

18.1.6 Bacillus Species 403

18.1.7 Streptococcus Species 404

18.1.8 Enterococcus faecium 405

18.1.9 Propionibacterium freudenreichii 405

18.1.10 Clostridium butyricum 406

18.1.11 Leuconostoc mesenteroides 406

18.1.12 Escherichia coli Nissle 406

18.1.13 Torulaspora delbrueckii 407

18.1.14 Corynebacterium glutamicum 407

18.1.15 Yarrowia lipolytica 408

18.2 Conclusion 408

Acknowledgment 408

Conflict of Interest 409

References 409

19 Microalgae: A Sustainable Source for Next- Generation Nutraceuticals 413
Neha Goel and Poonam Choudhary

19.1 Introduction 413

19.2 Microalgae: A Source for Nutraceutical Products 414

19.2.1 Microalgae and Its Biological Importance 415

19.2.2 Nutraceuticals from Microalgae: Types and Significance 420

19.2.2.1 Dietary Supplements 420

19.2.2.2 Functional and Medicinal Foods 422

19.2.2.3 Pharmaceuticals 424

19.3 Bioprocess Development of Nutraceutical Products 429

19.3.1 Bioprocessing of Microalgal Nutraceuticals 429

19.3.2 Downstream Processing Techniques for Product Recovery 430

19.3.2.1 Cell Recovery 430

19.3.2.2 Cell Disruption 431

19.3.2.3 Product Purification 435

19.3.2.4 Product Polishing 436

19.4 Economics and Market Demand of Nutraceuticals from Microalgae 436

19.5 Conclusion 438

References 439

Index 000

最近チェックした商品