サイバー防衛のための強化学習<br>Reinforcement Learning for Cyber Operations : Applications of Artificial Intelligence for Penetration Testing

個数:

サイバー防衛のための強化学習
Reinforcement Learning for Cyber Operations : Applications of Artificial Intelligence for Penetration Testing

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 288 p.
  • 言語 ENG
  • 商品コード 9781394206452
  • DDC分類 006.31

Full Description

A comprehensive and up-to-date application of reinforcement learning concepts to offensive and defensive cybersecurity

In Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing, a team of distinguished researchers delivers an incisive and practical discussion of reinforcement learning (RL) in cybersecurity that combines intelligence preparation for battle (IPB) concepts with multi-agent techniques. The authors explain how to conduct path analyses within networks, how to use sensor placement to increase the visibility of adversarial tactics and increase cyber defender efficacy, and how to improve your organization's cyber posture with RL and illuminate the most probable adversarial attack paths in your networks.

Containing entirely original research, this book outlines findings and real-world scenarios that have been modeled and tested against custom generated networks, simulated networks, and data. You'll also find:

A thorough introduction to modeling actions within post-exploitation cybersecurity events, including Markov Decision Processes employing warm-up phases and penalty scaling
Comprehensive explorations of penetration testing automation, including how RL is trained and tested over a standard attack graph construct
Practical discussions of both red and blue team objectives in their efforts to exploit and defend networks, respectively
Complete treatment of how reinforcement learning can be applied to real-world cybersecurity operational scenarios

Perfect for practitioners working in cybersecurity, including cyber defenders and planners, network administrators, and information security professionals, Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing will also benefit computer science researchers.

Contents

List of Figures xv

About the Authors xix

Foreword xxi

Preface xxiii

Acknowledgments xxv

Acronyms xxvii

Introduction xxix

1 Motivation 1

1.1 Introduction 1

1.1.1 Cyberattack Campaigns via MITRE ATT&CK 4

1.2 Attack Graphs 4

1.3 Cyber Terrain 5

1.4 Penetration Testing 6

1.5 AI Reinforcement Learning Overview 6

1.6 Organization of the Book 8

2 Overview of Penetration Testing 11

2.1 Penetration Testing 11

2.2 Importance of Data 43

2.3 Conclusion 56

3 Reinforcement Learning: Theory and Application 61

3.1 An Introduction to Reinforcement Learning (RL) 61

3.2 RL and Markov Decision Processes 63

3.3 Learnable Functions for Agents 66

3.4 Enter Deep Learning 69

3.5 Q-Learning and Deep Q-Learning 72

3.6 Advantage Actor-Critic (A2C) 78

3.7 Proximal Policy Optimization 83

3.8 Conclusion 85

4 Motivation for Model-driven Penetration Testing 89

4.1 Introduction 89

4.2 Limits of Modern Attack Graphs 91

4.3 RL for Penetration Testing 93

4.4 Modeling MDPs 95

4.5 Conclusion 98

5 Operationalizing RL for Cyber Operations 105

5.1 A High-Level Architecture 105

5.2 Layered Reference Model 107

5.3 Key Challenges for Operationalizing RL 113

5.4 Conclusions 117

6 Toward Practical RL for Pen-Testing 121

6.1 Current Challenges to Practicality 121

6.2 Practical Scalability in RL 130

6.3 Model Realism 136

6.4 Examples of Applications 144

6.5 Realism and Scale 154

7 Putting it Into Practice: RL for Scalable Penetration Testing 161

7.1 Crown Jewels Analysis 161

7.2 Discovering Exfiltration Paths 165

7.3 Discovering Command and Control Channels 171

7.4 Exposing Surveillance Detection Routes 176

7.5 Enhanced Exfiltration Path Analysis 183

8 Using and Extending These Models 193

8.1 Supplementing Penetration Testing 193

8.2 Risk Scoring 199

8.3 Further Modeling 201

8.4 Generalization 214

9 Model-driven Penetration Testing in Practice 225

9.1 Recap 225

9.2 The Case for Model-driven Cyber Detections 231

References 246

A Appendix 251

Index 253

最近チェックした商品