Fundamentals of Electron Emission Physics

個数:
  • 予約

Fundamentals of Electron Emission Physics

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 400 p.
  • 言語 ENG
  • 商品コード 9781394199556

Full Description

An authoritative and accurate guide to the physics of research- and technology-relevant phenomena of electron emission

In Fundamentals of Electron Emission Physics, distinguished research physicist, Dr. Kevin Jensen, delivers a practice-oriented introduction to the physics of electron emission. The book uses a physical intuition approach based on many years of research instead of heavy-handed mathematical formalism.

The author explores and explains the fundamentals of electron emission and the basis for successful performance and interpretation of experiments conducted at lab- and large-scale electron sources. He addresses the most common stumbling blocks that students and researchers who are new to the field often run into when confronted with the intricacies of the physics of electron emission.

Thorough introductions to semiconductors, canonical emission models, and modern physics methods
Comprehensive explorations of tunneling and transmission and the thermal-field-photoemission model
Practical discussions of mathematical methods, including trigonometric, Gamma, and Riemann Zeta functions
A mathematical appendix, as well as sample problems and solutions to help explain the topics discussed in the book

Perfect for advanced undergraduate and doctoral students in solid state physics, materials science, electron transport, and beam physics, Fundamentals of Electron Emission Physics will also benefit users and developers of electron sources and practicing academics and researchers.

Contents

1 History

1.1 Discovery of the Electron

1.2 Thermal Emission

1.3 Field Emission

1.4 Photo Emission

1.5 Secondary Emission

1.6 Space Charge Limited Current

1.7 Units and Conventions

1.7.1 Hydrogen Atom Units

1.7.2 Electron Emission Units

 

2 Methods of Modern Physics

2.1 Electrostatics

2.1.1 Method of Images

2.1.2 Point Charge Models

2.1.3 Line Charge Models

2.2 Statistical Mechanics

2.2.1 Phase Space

2.2.2 Maxwell-Boltzmann Distribution

2.2.3 Quantum Distributions

2.2.4 Energy and Entropy

2.2.5 Richardson Equation

2.2.6 Fermi-Dirac Distribution .

2.2.7 Classical to Quantum Statistics

2.2.8 Electrons and White Dwarf Stars

2.3 Relativity

2.4 Quantum Mechanics

2.4.1 Representations

2.4.2 Schrödinger's Equation

2.4.3 Eigenstates

2.4.4 Wave Packets

2.4.5 Tunneling

2.5 Many Body Physics

2.5.1 Kinetic Energy

2.5.2 Exchange Energy

2.5.3 Correlation Term

2.5.4 Core Term

2.6 Density Matrix

2.7 The Harmonic Oscillator

2.8 The Hydrogen Atom

2.9 The Metal Surface

 

3 Metals

3.1 Density of States

3.2 Spheres in Multi-dimensions

3.3 The Kronig Penny Model

3.4 Atomic Orbitals

3.5 Electronegativity

3.6 Sinusoidal Potential and Band Gap

3.7 Ion Potentials and Screening

3.7.1 Low Temperature / High Density

3.7.2 High Temperature / Low Density

3.7.3 Many Cores

3.8 Drude Model

3.9 Sommerfeld Model

3.9.1 Chemical Potential

3.9.2 Electron Density

3.10 Boltzmann's Equation

3.11 Wigner Distribution Function

3.12 Continuity Equation

3.13 Exchange-Correlation and an Effective Barrier Model

3.13.1 Infinite Barrier

3.13.2 Infinite Well

3.13.3 A Triangular Well

3.14 An Analytic Image Charge Potential

3.14.1 Work Function and Temperature

3.14.2 Work Function and Field

3.14.3 Changes to Current Density

 

4 Semiconductors

4.1 Semiconductor Image Charge Potential

4.2 Dielectric Constant and Screening

4.3 Effective Mass

4.3.1 Dispersion Relations

4.3.2 The kp Method

4.3.3 Hyperbolic Relations

4.3.4 Current and Effective Mass

4.4 Resistivity

4.5 Electrons and Holes

4.6 Band Gap and Temperature

4.7 Doping of Semiconductors

4.7.1 Accumulation Layers

4.7.2 Depletion Layers

 

5 Canonical Emission Models

5.1 An Early Model of Electron Emission

5.2 Supply Function

5.3 Simple WKB Tunneling Model

5.4 Richardson-Laue-Dushman Equation

5.5 Fowler-Nordheim Equation

5.6 Fowler-Dubridge Equation

5.7 Baroody Equation

5.8 Child Langmuir Law

5.9 Contacts

5.9.1 Zener Breakdown

5.9.2 Poole-Frenkel Transport

5.9.3 Tunneling Conduction

5.9.4 Resonant Tunneling in Field Emission

 

6  Transport

6.1 Conductivity

6.1.1 Electrical Conductivity

6.1.2 Thermal Conductivity

6.1.3 The Lorentz Number for Metals

6.1.4 Deficiencies of the Drude Model

6.2 Scattering

6.2.1 Acoustic Scattering

6.2.2 Electron-Electron Scattering

6.2.3 Impurity Scattering

6.3 Metal-Insulator Transition

6.3.1 Weak Localization

6.3.2 Hall Angle

 

7 Tunneling and Transmission

7.1 Schrödinger's Equation

7.1.1 Finite Difference Methods

7.1.2 JWKB Methods

7.1.3 Kemble Approximation

7.2 Shape Factor Method

7.2.1 Rectangular Barrier

7.2.2 Triangular Barrier

7.2.3 Quadratic Barrier

7.2.4 MIM Barrier

7.2.5 Schottky Nordheim Barrier

7.3 Transfer Matrix Approach

7.3.1 Plane Wave Transfer Matrix

7.3.2 Airy Function Transfer Matrix

7.3.3 Fowler Nordheim Equation

7.3.4 Resonance

7.3.5 Revised Gamow

7.3.6 Revised Kemble .

7.3.7 Schottky Deviations

7.3.8 Resonant Transmission

7.4 Tunneling Time

7.4.1 Buttiker-Landauer Model

7.4.2 Delay Time

7.4.3 Hartman Effect

7.4.4 Gaussian Wave Packet

7.4.5 Quantum Carpets

7.4.6 Transmission and Reflection Delay

7.5 Resonant Transmission

7.5.1 Schrödinger Approach

7.5.2 Bohm Approach

7.5.3 Wigner Distribution Function Approach

7.5.4 Time Evolution of Quantum Effects

7.6 Reflectionless Transmission

7.6.1 sech Well

7.6.2 Well-Barrier Model

7.6.3 Effective Barrier Model

 

8 A Thermal-Field-Photoemission Model

8.1 Experimental Energy Distribution

8.2 Anatomy of Current Density

8.2.1 Rectangular Barrier

8.2.2 Linear Barrier

8.2.3 Schottky-Nordheim Barrier

8.2.4 Gamow and Shape Factors

8.2.5 Transmission Probability

8.3 Current Density Integral

8.3.1 Experimental Thermal-Field Energy Distributions

8.3.2 Theoretical Thermal-Field Energy Distributions

8.3.3 The N-Function

8.4 General TFP Equation

8.4.1 Gamow and Energy Slope Factors

8.4.2 Original Model

8.4.3 Reformulated Model

8.5 Other Barriers

8.5.1 Metal-Insulator-Metal Barriers

8.5.2 Metal-Semiconductor Contacts

8.5.3 Nonlinear: Hemisphere

8.5.4 Nonlinear: Prolate Spheroidal

 

9 Mathematical Methods

9.1 Trigonometric Functions

9.2 Gamma Function

9.3 Riemann Zeta Function

9.4 Error Function

9.5 Legendre Polynomials

9.6 Lorentzian Functions

9.7 The Riemann Zeta Function

9.8 The Airy Function

9.9 Prolate Spheroidal Coordinates

9.10 Series

9.11 Integration

9.11.1 Series Summation

9.11.2 Series Expansion

9.11.3 Gaussian Quadrature

9.11.4 Sharply Peaked Integrands

9.11.5 Monte Carlo Integration

9.12 Differentiation

9.12.1 Orthogonal Coordinates

9.12.2 Radial Coordinates

9.12.3 Prolate Spheroidal Coordinates

9.12.4 Finite Difference Methods

9.13 Numerical Solution of an Ordinary Differential Equation

9.13.1 First Order

9.13.2 Second Order

 

10 Solutions to Select Problems

最近チェックした商品