Evolutionary Large-Scale Multi-Objective Optimization and Applications

個数:
電子版価格
¥15,471
  • 電子版あり

Evolutionary Large-Scale Multi-Objective Optimization and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 352 p.
  • 言語 ENG
  • 商品コード 9781394178414
  • DDC分類 519.6

Full Description

Tackle the most challenging problems in science and engineering with these cutting-edge algorithms

Multi-objective optimization problems (MOPs) are those in which more than one objective needs to be optimized simultaneously. As a ubiquitous component of research and engineering projects, these problems are notoriously challenging. In recent years, evolutionary algorithms (EAs) have shown significant promise in their ability to solve MOPs, but challenges remain at the level of large-scale multi-objective optimization problems (LSMOPs), where the number of variables increases and the optimized solution is correspondingly harder to reach.

Evolutionary Large-Scale Multi-Objective Optimization and Applications constitutes a systematic overview of EAs and their capacity to tackle LSMOPs. It offers an introduction to both the problem class and the algorithms before delving into some of the cutting-edge algorithms which have been specifically adapted to solving LSMOPs. Deeply engaged with specific applications and alert to the latest developments in the field, it's a must-read for students and researchers facing these famously complex but crucial optimization problems.

The book's readers will also find:

Analysis of multi-optimization problems in fields such as machine learning, network science, vehicle routing, and more
Discussion of benchmark problems and performance indicators for LSMOPs
Presentation of a new taxonomy of algorithms in the field

Evolutionary Large-Scale Multi-Objective Optimization and Applications is ideal for advanced students, researchers, and scientists and engineers facing complex optimization problems.

Contents

About the Authors xi

Foreword xiii

Preface xv

Acronyms xix

Symbols xxiii

1 Multi-Objective Evolutionary Algorithms and Evolutionary Large-Scale Optimization 1

1.1 Introduction 1

1.2 Multi-Objective Evolutionary Algorithms (MOEAs) 5

1.3 Evolutionary Large-Scale Optimization 21

1.4 Summary 24

2 Evolutionary Large-Scale Multi-Objective Optimization 31

2.1 Introduction 31

2.2 Test Problems for Large-Scale Multi-Objective Optimization 32

2.3 Performance Indicators 54

2.4 Test Problems for Sparse Large-Scale Multi-Objective Optimization 58

2.5 Performance Indicator for Sparse Large-Scale Multi-Objective Optimization 71

2.6 Summary 76

3 Evolutionary Algorithms for Large-Scale Multi-Objective Optimization 83

3.1 Introduction 83

3.2 Random Grouping-Based Evolutionary Algorithm 89

3.3 Decision Variable Clustering-Based Evolutionary Algorithm 93

3.4 Problem Reformulation-Based Evolutionary Algorithm 101

3.5 Competitive Swarm Optimizer-Based Evolutionary Algorithm 106

3.6 Experimental Comparisons 110

3.7 Summary 112

4 Evolutionary Algorithms for Sparse Large-Scale Multi-Objective Optimization 119

4.1 Introduction 119

4.2 Bi-Level Encoding-Based Evolutionary Algorithm 121

4.3 Machine Learning-Assisted Evolutionary Algorithm 127

4.4 Data Mining-Assisted Evolutionary Algorithm 134

4.5 Experimental Comparisons 143

4.6 Summary 146

5 Evolutionary Large-Scale Multi-Objective Optimization for Community Detection in Complex Networks 151

5.1 Introduction 151

5.2 Network Reduction-Based Multi-Objective Evolutionary Algorithm for Community Detection 152

5.3 Parallel Multi-Objective Evolutionary Algorithm for Community Detection 165

5.4 Summary 178

6 Evolutionary Large-Scale Multi-Objective Optimization in Logistics Scheduling 183

6.1 Introduction 183

6.2 Evolutionary Multi-Objective Route Grouping-Based Heuristic Algorithm for Large-Scale Capacitated Vehicle Routing Problems 184

6.3 Clustering-Based Surrogate-Assisted Multi-Objective Evolutionary Algorithm for Shelter Location Problem Under Uncertainty of Road Networks 195

6.4 Summary 206

7 Evolutionary Large-Scale Multi-Objective Optimization in Power Systems 211

7.1 Introduction 211

7.2 Ratio Error Estimation of Voltage Transformers 212

7.3 Problem Knowledge-Driven Coevolutionary Algorithm for Time-Varying Ratio Error Estimation 221

7.4 Summary 229

8 Evolutionary Large-Scale Multi-Objective Optimization in Radiotherapy Planning 235

8.1 Introduction 235

8.2 Problem Formulation 237

8.3 Bi-Encoding Coevolutionary Algorithm for IMRT Planning 240

8.4 Experimental Studies 252

8.5 Summary 255

9 Evolutionary Large-Scale Multi-Objective Optimization in Deep Learning 259

9.1 Introduction 259

9.2 Gradient-Guided Multi-Objective Evolutionary Algorithm for Training Deep Neural Networks 260

9.3 Action Command Encoding-Based Surrogate-Assisted Evolutionary Algorithm for Neural Architecture Search 288

9.4 Summary 310

References 310

Index 319

最近チェックした商品