Drug Design using Machine Learning

個数:
電子版価格
¥27,656
  • 電子版あり

Drug Design using Machine Learning

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 384 p.
  • 言語 ENG
  • 商品コード 9781394166282
  • DDC分類 615.190285

Full Description

DRUG DESIGN USING MACHINE LEARNING The use of machine learning algorithms in drug discovery has accelerated in recent years and this book provides an in-depth overview of the still-evolving field.

The objective of this book is to bring together several chapters that function as an overview of the use of machine learning and artificial intelligence applied to drug development. The initial chapters discuss drug-target interactions through machine learning for improving drug delivery, healthcare, and medical systems. Further chapters also provide topics on drug repurposing through machine learning, drug designing, and ultimately discuss drug combinations prescribed for patients with multiple or complex ailments.

This excellent overview

Provides a broad synopsis of machine learning and artificial intelligence applications to the advancement of drugs;
Details the use of molecular recognition for drug development through various mathematical models;
Highlights classical as well as machine learning-based approaches to study target-drug interactions in the field of drug discovery;
Explores computer-aided technics for prediction of drug effectiveness and toxicity.

Audience

The book will be useful for information technology professionals, pharmaceutical industry workers, engineers, university researchers, medical practitioners, and laboratory workers who have a keen interest in the area of machine learning and artificial intelligence approaches applied to drug advancements.

Contents

Preface Chapter 1 Molecular Recognition and Machine Learning to Predict Protein-Ligand Interactions

Chapter 2 Machine Learning Approaches to Improve Prediction of Target-Drug Interactions

Chapter 3 Machine Learning Applications in Rational Drug Discovery

Chapter 4 Deep Learning for the Selection of Multiple Analogs

Chapter 5 Drug Repurposing Based on Machine Learning

Chapter 6 Recent Advances in Drug Design with Machine Learning

Chapter 7 Loading of Drugs in Biodegradable Polymers Using Supercritical Fluid Technology

Chapter 8 Neural Network for Screening Active Sites on Proteins

Chapter 9 Protein Redesign and Engineering Using Machine Learning

Chapter 10 Role of Transcriptomics and Artificial Intelligence Approaches for the Selection of Bioactive Compounds

Chapter 11 Prediction of Drug Toxicity Through Machine Learning

Chapter 12 Artificial Intelligence for Assessing Side Effects

Index