Understanding Statistics in Psychology (9TH)

個数:

Understanding Statistics in Psychology (9TH)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 680 p.
  • 言語 ENG
  • 商品コード 9781292465180
  • DDC分類 150.15195

Full Description

Become confident with the most common statistical techniques so that you can grasp the fundamentals and transition from a student to a professional researcher

Now in its ninth edition, Understanding Statistics in Psychology, by Dennis Howitt and Duncan Cramer continues to provide an accessible introduction to the intimidating subject of statistics in psychology for students of all years and abilities.

Clear explanations and diagrams break down the statistical techniques that are used in modern psychological research and updated examples of real-life studies bring the topic to life by showing you how statistics are used in practice.

The new software-agnostic approach of this edition means that you will gain a solid understanding of statistics which can be applied to whichever statistical package you are using to analyse your data. The modular structure of this text and its small accessible chapters also mean that it is easy to dip in and out of, concentrating on the techniques that are the most relevant for you and your own research projects.

This text does not just focus on how to analyse data but also contains clear and detailed guidance of the whole research process, from how to choose the appropriate tests, to interpreting your findings and successfully writing up your research.

Contents

Preface



Why statistics?

Part 1 Descriptive statistics

Some basics: Variability and measurement
Describing variables: Tables and diagrams
Describing variables numerically: Averages, variation and spread
Shapes of distributions of scores
Standard deviation and z-scores: Standard unit of measurement in statistics
Relationships between two or more variables: Diagrams and tables
Correlation coefficients: Pearson's correlation and Spearman's rho
Regression: Prediction with precision

Part 2 Significance testing

Samples from populations
Statistical significance for the correlation coefficient: Practical introduction to statistical inference
Standard error: Standard deviation of the means of samples
Related or paired-samples t-test: Comparing two samples of related/correlated/paired scores
Unrelated or independent-samples t-test: Comparing two samples of unrelated/uncorrelated/independent scores
What you need to write about your statistical analysis
Confidence intervals
Effect size in statistical analysis: Do my findings matter?
Chi-square: Differences between samples of frequency data
Probability
One- versus two-tailed or -sided significance testing
Ranking tests: Nonparametric statistics

Part 3 Introduction to analysis of variance

Variance ratio test: F-ratio to compare two variances
Analysis of variance (ANOVA): One-way unrelated or uncorrelated ANOVA
ANOVA for correlated scores or repeated measures
Two-way or factorial ANOVA for unrelated/uncorrelated scores: Two studies for the price of one?
Multiple comparisons in ANOVA: A priori and post hoc tests
Mixed-design ANOVA: Related and unrelated variables together
Analysis of covariance (ANCOVA): Controlling for additional variables
Multivariate analysis of variance (MANOVA)
Discriminant (function) analysis - especially in MANOVA
Statistics and analysis of experiments

Part 4 More advanced correlational statistics

Partial correlation: Spurious correlation, third or confounding variables, suppressor variables
Factor analysis: Simplifying complex data
Multiple regression and multiple correlation
Path analysis
Analysis of a questionnaire/survey project

Part 5 Assorted advanced techniques

Meta-analysis: Combining and exploring statistical findings from previous research
Reliability in scales and measurement: Consistency and agreement
Influence of moderator variables on relationships between two variables
Statistical power analysis: Getting the sample size right

Part 6 Advanced qualitative or nominal techniques

Log-linear methods: Analysis of complex contingency tables
Multinomial logistic regression: Distinguishing between several different categories or groups
Binomial logistic regression

Part 7 Bringing things together

Data mining and Big Data
Towards a masterplan

Appendices

Glossary

References

Index

最近チェックした商品