Differential Equations and Boundary Value Problems: Computing and Modeling, Global Edition (5TH)

個数:

Differential Equations and Boundary Value Problems: Computing and Modeling, Global Edition (5TH)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 800 p.
  • 言語 ENG
  • 商品コード 9781292108773
  • DDC分類 515.3

Full Description

For introductory courses in Differential Equations. This best-selling text by these well-known authors blends the traditional algebra problem solving skills with the conceptual development and geometric visualisation of a modern differential equations course that is essential to science and engineering students. It reflects the new qualitative approach that is altering the learning of elementary differential equations, including the wide availability of scientific computing environments like Maple, Mathematica, and MATLAB. Its focus balances the traditional manual methods with the new computer-based methods that illuminate qualitative phenomena and make accessible a wider range of more realistic applications. Seldom-used topics have been trimmed and new topics added: it starts and ends with discussions of mathematical modeling of real-world phenomena, evident in figures, examples, problems, and applications throughout the text.

Contents

1. First-Order Differential Equations

1.1 Differential Equations and Mathematical Models

1.2 Integrals as General and Particular Solutions

1.3 Slope Fields and Solution Curves

1.4 Separable Equations and Applications

1.5 Linear First-Order Equations

1.6 Substitution Methods and Exact Equations

 

2. Mathematical Models and Numerical Methods

2.1 Population Models

2.2 Equilibrium Solutions and Stability

2.3 Acceleration-Velocity Models

2.4 Numerical Approximation: Euler's Method

2.5 A Closer Look at the Euler Method

2.6 The Runge-Kutta Method

 

3. Linear Equations of Higher Order

3.1 Introduction: Second-Order Linear Equations

3.2 General Solutions of Linear Equations

3.3 Homogeneous Equations with Constant Coefcients

3.4 Mechanical Vibrations

3.5 Nonhomogeneous Equations and Undetermined Coefcients

3.6 Forced Oscillations and Resonance

3.7 Electrical Circuits

3.8 Endpoint Problems and Eigenvalues

 

4. Introduction to Systems of Differential Equations

4.1 First-Order Systems and Applications

4.2 The Method of Elimination

4.3 Numerical Methods for Systems

 

5. Linear Systems of Differential Equations

5.1 Matrices and Linear Systems

5.2 The Eigenvalue Method for Homogeneous Systems

5.3 A Gallery of Solution Curves of Linear Systems

5.4 Second-Order Systems and Mechanical Applications

5.5 Multiple Eigenvalue Solutions

5.6 Matrix Exponentials and Linear Systems

5.7 Nonhomogeneous Linear Systems

 

6. Nonlinear Systems and Phenomena

6.1 Stability and the Phase Plane

6.2 Linear and Almost Linear Systems

6.3 Ecological Models: Predators and Competitors

6.4 Nonlinear Mechanical Systems

6.5 Chaos in Dynamical Systems

 

7. Laplace Transform Methods

7.1 Laplace Transforms and Inverse Transforms

7.2 Transformation of Initial Value Problems

7.3 Translation and Partial Fractions

7.4 Derivatives, Integrals, and Products of Transforms

7.5 Periodic and Piecewise Continuous Input Functions

7.6 Impulses and Delta Functions

 

8. Power Series Methods

8.1 Introduction and Review of PowerSeries

8.2 Series Solutions Near Ordinary Points

8.3 Regular Singular Points

8.4 Method of Frobenius: The Exceptional Cases

8.5 Bessel's Equation

8.6 Applications of Bessel Functions

 

9. Fourier Series Methods and Partial Differential Equations

9.1 Periodic Functions and Trigonometric Series

9.2 General Fourier Series and Convergence

9.3 Fourier Sine and Cosine Series

9.4 Applications of Fourier Series

9.5 Heat Conduction and Separation of Variables

9.6 Vibrating Strings and the One-Dimensional Wave Equation

9.7 Steady-State Temperature and Laplace's Equation

 

10. Eigenvalue Methods and Boundary Value Problems

10.1 Sturm-Liouville Problems and Eigenfunction Expansions

10.2 Applications of Eigenfunction Series

10.3 Steady Periodic Solutions and Natural Frequencies

10.4 Cylindrical Coordinate Problems

10.5 Higher-Dimensional Phenomena

 

最近チェックした商品