Fractional Calculus with Applications for Nuclear Reactor Dynamics

個数:

Fractional Calculus with Applications for Nuclear Reactor Dynamics

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 240 p.
  • 言語 ENG
  • 商品コード 9781138893238
  • DDC分類 621.48301515

Full Description

Introduces Novel Applications for Solving Neutron Transport Equations

While deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous ways. Since fractional calculus represents a reactor more closely than classical integer order calculus, Fractional Calculus with Applications for Nuclear Reactor Dynamics focuses on the application of fractional calculus to describe the physical behavior of nuclear reactors. It applies fractional calculus to incorporate the mathematical methods used to analyze the diffusion theory model of neutron transport and explains the role of neutron transport in reactor theory.

The author discusses fractional calculus and the numerical solution for fractional neutron point kinetic equation (FNPKE), introduces the technique for efficient and accurate numerical computation for FNPKE with different values of reactivity, and analyzes the fractional neutron point kinetic (FNPK) model for the dynamic behavior of neutron motion. The book begins with an overview of nuclear reactors, explains how nuclear energy is extracted from reactors, and explores the behavior of neutron density using reactivity functions. It also demonstrates the applicability of the Haar wavelet method and introduces the neutron diffusion concept to aid readers in understanding the complex behavior of average neutron motion.

This text:




Applies the effective analytical and numerical methods to obtain the solution for the NDE
Determines the numerical solution for one-group delayed neutron FNPKE by the explicit finite difference method
Provides the numerical solution for classical as well as fractional neutron point kinetic equations
Proposes the Haar wavelet operational method (HWOM) to obtain the numerical approximate solution of the neutron point kinetic equation, and more



Fractional Calculus with Applications for Nuclear Reactor Dynamics

thoroughly and systematically presents the concepts of fractional calculus and emphasizes the relevance of its application to the nuclear reactor.

Contents

Mathematical Methods in Nuclear Reactor Physics. Neutron Diffusion Equation Model in Dynamical Systems. Fractional Order Neutron Point Kinetic Model. Numerical Solution for Deterministic Classical and Fractional Order Neutron Point Kinetic Model. Classical and Fractional Order Stochastic Neutron Point Kinetic Model. Solution for Nonlinear Classical and Fractional Order Neutron Point Kinetic Model with Newtonian Temperature Feedback Reactivity. Numerical Simulation Using Haar Wavelet Method for Neutron Point Kinetic Equation Involving Imposed Reactivity Function. Numerical Solution Using Two- Dimensional Haar Wavelet Method for Stationary Neutron Transport Equation in Homogeneous Isotropic Medium. References.

最近チェックした商品