有意性検定がなかったら(新版)<br>What If There Were No Significance Tests? : Classic Edition (Multivariate Applications Series)

個数:
電子版価格
¥14,643
  • 電子版あり
  • ポイントキャンペーン

有意性検定がなかったら(新版)
What If There Were No Significance Tests? : Classic Edition (Multivariate Applications Series)

  • ウェブストア価格 ¥58,579(本体¥53,254)
  • Routledge(2016/03発売)
  • 外貨定価 US$ 265.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 2,660pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 444 p.
  • 言語 ENG
  • 商品コード 9781138892460
  • DDC分類 519.56

Full Description

The classic edition of What If There Were No Significance Tests? highlights current statistical inference practices. Four areas are featured as essential for making inferences: sound judgment, meaningful research questions, relevant design, and assessing fit in multiple ways. Other options (data visualization, replication or meta-analysis), other features (mediation, moderation, multiple levels or classes), and other approaches (Bayesian analysis, simulation, data mining, qualitative inquiry) are also suggested.

The Classic Edition's new Introduction demonstrates the ongoing relevance of the topic and the charge to move away from an exclusive focus on NHST, along with new methods to help make significance testing more accessible to a wider body of researchers to improve our ability to make more accurate statistical inferences. Part 1 presents an overview of significance testing issues. The next part discusses the debate in which significance testing should be rejected or retained. The third part outlines various methods that may supplement significance testing procedures. Part 4 discusses Bayesian approaches and methods and the use of confidence intervals versus significance tests. The book concludes with philosophy of science perspectives.

Rather than providing definitive prescriptions, the chapters are largely suggestive of general issues, concerns, and application guidelines. The editors allow readers to choose the best way to conduct hypothesis testing in their respective fields. For anyone doing research in the social sciences, this book is bound to become "must" reading. Ideal for use as a supplement for graduate courses in statistics or quantitative analysis taught in psychology, education, business, nursing, medicine, and the social sciences, the book also benefits independent researchers in the behavioral and social sciences and those who teach statistics.

Contents

New Introduction. Preface. Part I: Overview. L.L. Harlow, Significance Testing Introduction and Overview. Part II: The Debate: Against and For Significance Testing. J.Cohen, The Earth Is Round. F.L. Schmidt, J. Hunter, Eight Objections to the Discontinuation of Significance Testing in the Analysis of Research Data. S.A. Mulaik, N.S. Raju, R. Harshman, There Is a Time and Place for Significance Testing. R.P. Abelson, A Retrospective on the Significance Test Ban of 1999 (If There Were No Significance Tests, They Would Be Invented). Part III:Suggested Alternatives to Significance Testing. R.J. Harris, Reforming Significance Testing via Three-Valued Logic. J.S. Rossi, Spontaneous Recovery of Verbal Learning: A Case Study in the Failure of Psychology as a Cumulative Science. J.H. Steiger, R.T. Fouladi,Noncentrality Interval Estimation and the Evaluation of Statistical Models. R.P. McDonald,Goodness of Approximation in the Linear Model. Part IV: A Bayesian Approach to Hypothesis Testing. R.M. Pruzek, An Introduction to Bayesian Inference and Its Application.D. Rindskopf, Testing 'Small,' Not Null, Hypotheses: Classical and Bayesian Approaches.C.S. Reichardt, H.F. Gollob, When Confidence Intervals Should Be Used Instead of Statistical Significance Tests, and Vice Versa. Part V: Philosophy of Science Issues. W.W. Rozeboom, Good Science Is Abductive, Not Hypothetico-Deductive. P.E. Meehl, The Problem Is Epistemology, Not Statistics: Replace Significance Tests by Confidence Intervals and Quantify Accuracy of Risky Numerical Predictions.

最近チェックした商品