Statistical Methods for Field and Laboratory Studies in Behavioral Ecology (Chapman & Hall/crc Applied Environmental Statistics)

個数:

Statistical Methods for Field and Laboratory Studies in Behavioral Ecology (Chapman & Hall/crc Applied Environmental Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 302 p.
  • 言語 ENG
  • 商品コード 9781138743366
  • DDC分類 577.015195

Full Description

Statistical Methods for Field and Laboratory Studies in Behavioral Ecology focuses on how statistical methods may be used to make sense of behavioral ecology and other data. It presents fundamental concepts in statistical inference and intermediate topics such as multiple least squares regression and ANOVA. The objective is to teach students to recognize situations where various statistical methods should be used, understand the strengths and limitations of the methods, and to show how they are implemented in R code. Examples are based on research described in the literature of behavioral ecology, with data sets and analysis code provided.

Features:




This intermediate to advanced statistical methods text was written with the behavioral ecologist in mind



Computer programs are provided, written in the R language.



Datasets are also provided, mostly based, at least to some degree, on real studies.



Methods and ideas discussed include multiple regression and ANOVA, logistic and Poisson regression, machine learning and model identification, time-to-event modeling, time series and stochastic modeling, game-theoretic modeling, multivariate methods, study design/sample size, and what to do when things go wrong.

It is assumed that the reader has already had exposure to statistics through a first introductory course at least, and also has sufficient knowledge of R. However, some introductory material is included to aid the less initiated reader.

Scott Pardo, Ph.D., is an accredited professional statistician (PStat®) by the American Statistical Association. Michael Pardo is a Ph.D. is a candidate in behavioral ecology at Cornell University, specializing in animal communication and social behavior.

Contents

Preface. Statistical Foundations. Binary Results - Single Samples and 2 x 2 Tables. Continuous Variables - One and Two Samples. The Linear Model - Continuous Regressor Variables. The Linear Model - Discrete Regressor Variables. The Linear Model - Random Effects and Mixed Models. Polytomous Discrete Variables - R x C Contingency Tables. The Generalized Linear Model - Logistic Regression. Multivariate Continuous Variables - Dimension Reduction. Multivariate Continuous Variables - Grouping and Discrimination. Bayesian and Frequentist Philosophies. Decision and Game Theory - Bayesian and Non-Bayesian. Some Notes on Sample Size Estimation.

最近チェックした商品