Reinforcement Learning for Cyber-Physical Systems : with Cybersecurity Case Studies

個数:
電子版価格
¥10,447
  • 電子版あり

Reinforcement Learning for Cyber-Physical Systems : with Cybersecurity Case Studies

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9781138543539
  • DDC分類 006.31

Full Description

Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies was inspired by recent developments in the fields of reinforcement learning (RL) and cyber-physical systems (CPSs). Rooted in behavioral psychology, RL is one of the primary strands of machine learning. Different from other machine learning algorithms, such as supervised learning and unsupervised learning, the key feature of RL is its unique learning paradigm, i.e., trial-and-error. Combined with the deep neural networks, deep RL become so powerful that many complicated systems can be automatically managed by AI agents at a superhuman level. On the other hand, CPSs are envisioned to revolutionize our society in the near future. Such examples include the emerging smart buildings, intelligent transportation, and electric grids.

However, the conventional hand-programming controller in CPSs could neither handle the increasing complexity of the system, nor automatically adapt itself to new situations that it has never encountered before. The problem of how to apply the existing deep RL algorithms, or develop new RL algorithms to enable the real-time adaptive CPSs, remains open. This book aims to establish a linkage between the two domains by systematically introducing RL foundations and algorithms, each supported by one or a few state-of-the-art CPS examples to help readers understand the intuition and usefulness of RL techniques.

Features




Introduces reinforcement learning, including advanced topics in RL



Applies reinforcement learning to cyber-physical systems and cybersecurity



Contains state-of-the-art examples and exercises in each chapter



Provides two cybersecurity case studies

Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies is an ideal text for graduate students or junior/senior undergraduates in the fields of science, engineering, computer science, or applied mathematics. It would also prove useful to researchers and engineers interested in cybersecurity, RL, and CPS. The only background knowledge required to appreciate the book is a basic knowledge of calculus and probability theory.

Contents

Section I Introduction

Chapter 1 □ Overview of Reinforcement Learning

Chapter 2 □ Overview of CyberPhysical Systems and Cybersecurity

Section II Reinforcement Learning for Cyber-Physical Systems

Chapter 3 □ Reinforcement Learning Problems

Chapter 4 □ Modelbased Reinforcement Learning

Chapter 5 □ Modelfree Reinforcement Learning

Chapter 6 □ Deep Reinforcement Learning

Section III Case Studies

Chapter 7 □ Reinforcement Learning for Cybersecurity

Chapter 8 □ Case Study: Online CyberAttack Detection in Smart Grid

Chapter 9 □ Case Study: Defeat Maninthemiddle Attack

最近チェックした商品