Rによる生物情報学入門(テキスト)<br>Introduction to Bioinformatics with R : A Practical Guide for Biologists (Chapman & Hall/crc Computational Biology Series)

個数:

Rによる生物情報学入門(テキスト)
Introduction to Bioinformatics with R : A Practical Guide for Biologists (Chapman & Hall/crc Computational Biology Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 310 p.
  • 言語 ENG
  • 商品コード 9781138495715
  • DDC分類 570.2855133

Full Description

In biological research, the amount of data available to researchers has increased so much over recent years, it is becoming increasingly difficult to understand the current state of the art without some experience and understanding of data analytics and bioinformatics. An Introduction to Bioinformatics with R: A Practical Guide for Biologists leads the reader through the basics of computational analysis of data encountered in modern biological research. With no previous experience with statistics or programming required, readers will develop the ability to plan suitable analyses of biological datasets, and to use the R programming environment to perform these analyses. This is achieved through a series of case studies using R to answer research questions using molecular biology datasets. Broadly applicable statistical methods are explained, including linear and rank-based correlation, distance metrics and hierarchical clustering, hypothesis testing using linear regression, proportional hazards regression for survival data, and principal component analysis. These methods are then applied as appropriate throughout the case studies, illustrating how they can be used to answer research questions.

Key Features:

· Provides a practical course in computational data analysis suitable for students or researchers with no previous exposure to computer programming.

· Describes in detail the theoretical basis for statistical analysis techniques used throughout the textbook, from basic principles

· Presents walk-throughs of data analysis tasks using R and example datasets. All R commands are presented and explained in order to enable the reader to carry out these tasks themselves.

· Uses outputs from a large range of molecular biology platforms including DNA methylation and genotyping microarrays; RNA-seq, genome sequencing, ChIP-seq and bisulphite sequencing; and high-throughput phenotypic screens.

· Gives worked-out examples geared towards problems encountered in cancer research, which can also be applied across many areas of molecular biology and medical research.

This book has been developed over years of training biological scientists and clinicians to analyse the large datasets available in their cancer research projects. It is appropriate for use as a textbook or as a practical book for biological scientists looking to gain bioinformatics skills.

Contents

1, Introduction 2. Introduction to R 3. An Introduction to LINUX for Biological Research 4. Statistical Methods for Data Analysis 5. Analyzing Generic Tabular Numeric Datasets in R 6. Functional Enrichment Analysis 7. Integrating Multiple Datasets in R 8. Analyzing Microarray Data in R 9. Analyzing DNA Methylation Microarray Data in R 10. DNA Analysis With Microarrays 11. Working with Sequencing Data 12. Genomic Sequence Profiling 13. ChIP-seq 14. RNA-seq 15. Bisulphite Sequencing 16. Final Notes

最近チェックした商品