統計的機械学習(テキスト)<br>Statistical Machine Learning : A Unified Framework (Chapman & Hall/crc Texts in Statistical Science)

個数:
電子版価格
¥23,219
  • 電子版あり

統計的機械学習(テキスト)
Statistical Machine Learning : A Unified Framework (Chapman & Hall/crc Texts in Statistical Science)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 506 p.
  • 言語 ENG
  • 商品コード 9781138484696
  • DDC分類 006.31

Full Description

The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms.

Features:




Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms



Matrix calculus methods for supporting machine learning analysis and design applications



Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions



Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification

This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible.

About the Author:

Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.

Contents

Part I: Inference and Learning Machines. 1. A Statistical Machine Learning Framework 2. Set Theory for Concept Modeling 3. Formal Machine Learning Algorithms Part II: Deterministic Learning Machines 4. Linear Algebra for Machine Learning 5. Matrix Calculus for Machine Learning 6. Convergence of Time-Invariant Dynamical Systems 7. Batch Learning Algorithm Convergence Part III: Stochastic Learning Machines 8. Random Vectors and Random Functions 9. Stochastic Sequences 10. Probability Models of Data Generation 11. Monte Carlo Markov Chain Algorithm Convergence 12. Adaptive Learning Algorithm Convergence Part IV: Generalization Performance 13. Statistical Learning Objective Function Design 14. Simulation Methods for Evaluating Generalization 15. Analytic Formulas for Evaluating Generalization 16. Model Selection and Evaluation

最近チェックした商品