Data Science in R : A Case Studies Approach to Computational Reasoning and Problem Solving (Chapman & Hall/crc the R Series)

個数:
  • ポイントキャンペーン

Data Science in R : A Case Studies Approach to Computational Reasoning and Problem Solving (Chapman & Hall/crc the R Series)

  • ウェブストア価格 ¥51,392(本体¥46,720)
  • CRC Press(2017/11発売)
  • 外貨定価 US$ 250.00
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 2,335pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 540 p.
  • 言語 ENG
  • 商品コード 9781138469297
  • DDC分類 502.85

Full Description

Effectively Access, Transform, Manipulate, Visualize, and Reason about Data and Computation
Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving illustrates the details involved in solving real computational problems encountered in data analysis. It reveals the dynamic and iterative process by which data analysts approach a problem and reason about different ways of implementing solutions.

The book's collection of projects, comprehensive sample solutions, and follow-up exercises encompass practical topics pertaining to data processing, including:

Non-standard, complex data formats, such as robot logs and email messages
Text processing and regular expressions
Newer technologies, such as Web scraping, Web services, Keyhole Markup Language (KML), and Google Earth
Statistical methods, such as classification trees, k-nearest neighbors, and na Bayes
Visualization and exploratory data analysis
Relational databases and Structured Query Language (SQL)
Simulation
Algorithm implementation
Large data and efficiency

Suitable for self-study or as supplementary reading in a statistical computing course, the book enables instructors to incorporate interesting problems into their courses so that students gain valuable experience and data science skills. Students learn how to acquire and work with unstructured or semistructured data as well as how to narrow down and carefully frame the questions of interest about the data.

Blending computational details with statistical and data analysis concepts, this book provides readers with an understanding of how professional data scientists think about daily computational tasks. It will improve readers computational reasoning of real-world data analyses.

Contents

Data Manipulation and Modeling. Simulation Studies. Data- and Web-Technologies. Index.