Nonlinear Control and Filtering for Stochastic Networked Systems

個数:
電子版価格
¥10,912
  • 電子版あり

Nonlinear Control and Filtering for Stochastic Networked Systems

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 242 p.
  • 言語 ENG
  • 商品コード 9781138386570
  • DDC分類 003.76

Full Description

In this book, control and filtering problems for several classes of stochastic networked systems are discussed. In each chapter, the stability, robustness, reliability, consensus performance, and/or disturbance attenuation levels are investigated within a unified theoretical framework. The aim is to derive the sufficient conditions such that the resulting systems achieve the prescribed design requirements despite all the network-induced phenomena. Further, novel notions such as randomly occurring sensor failures and consensus in probability are discussed. Finally, the theories/techniques developed are applied to emerging research areas.

Key Features




Unifies existing and emerging concepts concerning stochastic control/filtering and distributed control/filtering with an emphasis on a variety of network-induced complexities



Includes concepts like randomly occurring sensor failures and consensus in probability (with respect to time-varying stochastic multi-agent systems)



Exploits the recursive linear matrix inequality approach, completing the square method, Hamilton-Jacobi inequality approach, and parameter-dependent matrix inequality approach to handle the emerging mathematical/computational challenges



Captures recent advances of theories, techniques, and applications of stochastic control as well as filtering from an engineering-oriented perspective



Gives simulation examples in each chapter to reflect the engineering practice

Contents

1 Introduction. 2 Robust H1 Sliding Mode Control for Nonlinear Stochastic Systems with Multiple Data Packet Losses. 3 Sliding Mode Control for a Class of Nonlinear Discrete-Time Networked Systems with Multiple Stochastic Communication Delays. 4 Sliding Mode Control for Nonlinear Networked Systems with Stochastic Communication Delays. 5 Reliable H1 Control for A Class of Nonlinear Time-Varying Stochastic Systems with Randomly Occurring Sensor Failures. 6 Event-Triggered Mean Square Consensus Control for Time-Varying Stochastic Multi-Agent System with Sensor Saturations. 7 Mean-Square H1 Consensus Control for A Class of Nonlinear Time-Varying Stochastic Multi-Agent Systems: The Finite-Horizon Case. 8 Consensus Control for Nonlinear Multi-Agent Systems Subject to Deception Attacks. 9 Distributed Event-Based Set-Membership Filtering for A Class of Nonlinear Systems with Sensor Saturations over Sensor Networks. 10 Variance-Constrained Distributed Filtering for Time varying Systems with Multiplicative Noises and Deception Attacks over Sensor Networks. 11 Conclusions and Future Topics. Bibliography. Index.