Swarm Intelligence Algorithms : A Tutorial

個数:

Swarm Intelligence Algorithms : A Tutorial

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 348 p.
  • 言語 ENG
  • 商品コード 9781138384491
  • DDC分類 006.3824

Full Description

Swarm intelligence algorithms are a form of nature-based optimization algorithms. Their main inspiration is the cooperative behavior of animals within specific communities. This can be described as simple behaviors of individuals along with the mechanisms for sharing knowledge between them, resulting in the complex behavior of the entire community. Examples of such behavior can be found in ant colonies, bee swarms, schools of fish or bird flocks.

Swarm intelligence algorithms are used to solve difficult optimization problems for which there are no exact solving methods or the use of such methods is impossible, e.g. due to unacceptable computational time.

This book thoroughly presents the basics of 24 algorithms selected from the entire family of swarm intelligence algorithms. Each chapter deals with a different algorithm describing it in detail and showing how it works in the form of a pseudo-code. In addition, the source code is provided for each algorithm in Matlab and in the C ++ programming language. In order to better understand how each swarm intelligence algorithm works, a simple numerical example is included in each chapter, which guides the reader step by step through the individual stages of the algorithm, showing all necessary calculations.

This book can provide the basics for understanding how swarm intelligence algorithms work, and aid readers in programming these algorithms on their own to solve various computational problems.

This book should also be useful for undergraduate and postgraduate students studying nature-based optimization algorithms, and can be a helpful tool for learning the basics of these algorithms efficiently and quickly. In addition, it can be a useful source of knowledge for scientists working in the field of artificial intelligence, as well as for engineers interested in using this type of algorithms in their work.

If the reader already has basic knowledge of swarm intelligence algorithms, we recommend the book: "Swarm Intelligence Algorithms: Modifications and Applications" (Edited by A. Slowik, CRC Press, 2020), which describes selected modifications of these algorithms and presents their practical applications.

Contents

1. Ant Colony Optimization. 2. Arti□cial Bee Colony Algorithm. 3. Bacterial Foraging Optimization. 4. Bat Algorithm. 5. Cat Swarm Optimization. 6. Chicken Swarm Optimization. 7. Cockroach Swarm Optimization. 8. Crow Search Algorithm. 9. Cuckoo Search Algorithm. 10. Dynamic Virtual Bats Algorithm. 11. Dispersive Flies Optimisation: A Tutorial. 12. Elephant Herding Optimization. 13. Fire□y Algorithm. 14. Glowworm Swarm Optimization - A Tutorial. 15. Grasshopper Optimization Algorithm. 16. Grey Wolf Optimizer. 17. Hunting Search Algorithm. 18. Krill Herd Algorithm. 19. Monarch Butter□y Optimization. 20. Particle Swarm Optimization. 21. Salp Swarm Optimization: Tutorial. 22. Social Spider Optimization. 23. Stochastic Diffusion Search: A Tutorial. 24. Whale Optimization Algorithm.

最近チェックした商品