高等教育における学習分析<br>Learning Analytics in Higher Education : Current Innovations, Future Potential, and Practical Applications

個数:

高等教育における学習分析
Learning Analytics in Higher Education : Current Innovations, Future Potential, and Practical Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 200 p.
  • 言語 ENG
  • 商品コード 9781138302136
  • DDC分類 371.26

Full Description

Learning Analytics in Higher Education provides a foundational understanding of how learning analytics is defined, what barriers and opportunities exist, and how it can be used to improve practice, including strategic planning, course development, teaching pedagogy, and student assessment. Well-known contributors provide empirical, theoretical, and practical perspectives on the current use and future potential of learning analytics for student learning and data-driven decision-making, ways to effectively evaluate and research learning analytics, integration of learning analytics into practice, organizational barriers and opportunities for harnessing Big Data to create and support use of these tools, and ethical considerations related to privacy and consent. Designed to give readers a practical and theoretical foundation in learning analytics and how data can support student success in higher education, this book is a valuable resource for scholars and administrators.

Contents

Contents

List of Tables

List of Figures

Preface

Acknowledgments

Chapter 1: Absorptive capacity and routines: Understanding barriers to learning analytics adoption in higher education
Aditya Johri

Chapter 2. Analytics in the field: Why locally grown continuous improvement systems are essential for effective data driven decision-making
Matthew T. Hora

Chapter 3: Big data, small data, and data shepherds
Jennifer DeBoer and Lori Breslow

Chapter 4: Evaluating scholarly teaching: A model and call for an evidence-based approach
Daniel L. Reinholz, Joel C. Corbo, Daniel J. Bernstein, and Noah D. Finkelstein

Chapter 5: Discipline-focused learning analytics approaches with users instead of for usersDavid B. Knight, Cory Brozina, Timothy J. Kinoshita, Brian J. Novoselich, Glenda D. Young, and Jacob R. Grohs

Chapter 6: Student consent in learning analytics: The devil in the details?Paul Prinsloo and Sharon Slade

Chapter 7: Using learning analytics to improve student learning outcomes assessment in higher education: Potential, constraint, & possibility

Carrie Klein, and Richard M. Hess

Chapter 8: Data, data everywhere: Implications and considerations

Matthew D. Pistilli

Contributor Bios

最近チェックした商品