医薬品開発のためのRによるベイズ解析<br>Bayesian Analysis with R for Drug Development : Concepts, Algorithms, and Case Studies (Chapman & Hall/crc Biostatistics Series)

個数:
電子版価格
¥8,919
  • 電子版あり

医薬品開発のためのRによるベイズ解析
Bayesian Analysis with R for Drug Development : Concepts, Algorithms, and Case Studies (Chapman & Hall/crc Biostatistics Series)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 310 p.
  • 言語 ENG
  • 商品コード 9781138295872
  • DDC分類 615.19001519542

Full Description

Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development.

Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems.

Features




Provides a single source of information on Bayesian statistics for drug development



Covers a wide spectrum of pre-clinical, clinical, and CMC topics



Demonstrates proper Bayesian applications using real-life examples



Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms



Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge

Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University.

Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.

Contents

Background. Drug Research and Development. Basics of Bayesian analysis. Bayesian Estimation of Sample Size and Power. Pre-Clinical and Clinical Research. Pre-clinical efficacy study. Futility analysis. Phase 3 Clinical Trial. Chemistry, Manufacturing, and Control. Analytical method. Process Development. Bayesian Approach to Statistical Process Control.

最近チェックした商品