Hyperspectral Indices and Image Classifications for Agriculture and Vegetation (Hyperspectral Remote Sensing of Vegetation, Second Edition) (2ND)

個数:
電子版価格
¥10,292
  • 電子版あり

Hyperspectral Indices and Image Classifications for Agriculture and Vegetation (Hyperspectral Remote Sensing of Vegetation, Second Edition) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 296 p.
  • 言語 ENG
  • 商品コード 9781138066038
  • DDC分類 581.7

Full Description

Written by leading global experts, including pioneers in the field, the four-volume set on Hyperspectral Remote Sensing of Vegetation, Second Edition, reviews existing state-of- the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of hyperspectral data in the study and management of agricultural crops and natural vegetation.

Volume II, Hyperspectral Indices and Image Classifications for Agriculture and Vegetation evaluates the performance of hyperspectral narrowband or imaging spectroscopy data with specific emphasis on the uses and applications of hyperspectral narrowband vegetation indices in characterizing, modeling, mapping, and monitoring agricultural crops and vegetation. This volume presents and discusses topics such as the non-invasive quantification of foliar pigments, leaf nitrogen concentration of cereal crop, the estimation of nitrogen content in crops and pastures, and forest leaf chlorophyll content, among others. The concluding chapter provides readers with useful guidance on the highlights and essence of Volume II through the editors' perspective.

Key Features of Volume II:

Provides the fundamentals of hyperspectral narrowband vegetation indices and hyperspectral derivative vegetation indices and their applications in agriculture and vegetation studies.




Discusses the latest advances in hyperspectral image classification methods and their applications.




Explains the massively big hyperspectral sensing data processing on cloud computing architectures.




Highlights the state-of-the-art methods in the field of hyperspectral narrowband vegetation indices for monitoring agriculture, vegetation, and their properties such as plant water content, nitrogen, chlorophyll, and others at leaf, canopy, field, and landscape scales.

Includes best global expertise on hyperspectral remote sensing of agriculture, crop water use, plant species detection, crop productivity and water productivity mapping, and modeling.

Contents

Section I: Hyperspectral Vegetation Indices




Hyperspectral vegetation indices
[Dar A. Roberts, Keely L. Roth, Erin B. Wetherley, Susan K. Meerdink, and Ryan L. Perroy]




Derivative hyperspectral vegetation indices in characterizing forest biophysical and biochemical quantities
[Quan Wang, Jia Jin, Rei Sonobe, and Jing Ming Chen]

Section II: Hyperspectral Image Classification Methods and Approaches




Hyperpsectral image classification methods in vegetation and agricultural
cropland studies

[Edoardo Pasolli, Saurabh Prasad, Melba M. Crawford, and James C. Tilton]




Big Data Processing on Cloud Computing Architectures for Hyperspectral Remote Sensing
[Zebin Wu, Jin Sun, and Yi Zhang]

Section III: Hyperspectral Vegetation Indices Applications to Agriculture and Vegetation




Non-invasive Quantification of Foliar Pigments: Principles and Implementation
[Anatoly Gitelson and Alexei Solovchenko]




Hyperspectral Remote Sensing of Leaf Nitrogen Concentration in Cereal Crops
[Tao Cheng, Yan Zhu, Dong Li, Xia Yao, and Kai Zhou]




Optical remote sensing of vegetation water content
[Colombo Roberto, Busetto Lorenzo, Meroni Michele, Rossini Micol, and Panigada Cinzia]




Estimation of nitrogen content in herbaceous plants using hyperspectral vegetation indices
[D. Stroppiana, F. Fava, M. Boschetti, and P.A. Brivio]




Hyperspectral remote sensing of leaf chlorophyll content: from leaf, canopy, to landscape scales
[Yongqin Zhang]

Section IV: Conclusions




Fifty-years of Advances in Hyperspectral Remote Sensing of Agriculture and Vegetation: Summary, Insights, and Highlights of Volume II: Hyperspectral Vegetation Indices and Image Classifications for Agriculture and Vegetation

[Prasad S. Thenkabil, John G. Lyon, and Alfredo Huete]

最近チェックした商品