Mathematical Theory of Subdivision : Finite Element and Wavelet Methods

個数:
電子版価格
¥11,096
  • 電子版あり

Mathematical Theory of Subdivision : Finite Element and Wavelet Methods

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 230 p.
  • 言語 ENG
  • 商品コード 9781138051584
  • DDC分類 530.151825

Full Description

This book provides good coverage of the powerful numerical techniques namely, finite element and wavelets, for the solution of partial differential equation to the scientists and engineers with a modest mathematical background. The objective of the book is to provide the necessary mathematical foundation for the advanced level applications of these numerical techniques. The book begins with the description of the steps involved in finite element and wavelets-Galerkin methods. The knowledge of Hilbert and Sobolev spaces is needed to understand the theory of finite element and wavelet-based methods. Therefore, an overview of essential content such as vector spaces, norm, inner product, linear operators, spectral theory, dual space, and distribution theory, etc. with relevant theorems are presented in a coherent and accessible manner. For the graduate students and researchers with diverse educational background, the authors have focused on the applications of numerical techniques which are developed in the last few decades. This includes the wavelet-Galerkin method, lifting scheme, and error estimation technique, etc.

Features:

• Computer programs in Mathematica/Matlab are incorporated for easy understanding of wavelets.

• Presents a range of workout examples for better comprehension of spaces and operators.

• Algorithms are presented to facilitate computer programming.

• Contains the error estimation techniques necessary for adaptive finite element method.

This book is structured to transform in step by step manner the students without any knowledge of finite element, wavelet and functional analysis to the students of strong theoretical understanding who will be ready to take many challenging research problems in this area.

Contents

Preface

Authors

1. Overview of finite element method




Some common governing differential equations



Basic steps of finite element method



Element stiffness matrix for a bar



Element stiffness matrix for single variable 2d element



Element stiffness matrix for a beam element



References for further reading



2. Wavelets




Wavelet basis functions



Wavelet-Galerkin method



Daubechies wavelets for boundary and initial value problems



References for further reading



3. Fundamentals of vector spaces




Introduction



Vector spaces



Normed linear spaces



Inner product spaces



Banach spaces



Hilbert spaces



Projection on finite dimensional spaces



Change of basis - Gram-Schmidt othogonalization process



Riesz bases and frame conditions



References for further reading



4. Operators




General concept of functions



Operators



Linear and adjoint operators



Functionals and dual space



Spectrum of bounded linear self-adjoint operator



Classification of differential operators



Existence, uniqueness and regularity of solution



References



5. Theoretical foundations of the finite element method




Distribution theory



Sobolev spaces



Variational Method



Nonconforming elements and patch test



References for further reading



6. Wavelet- based methods for differential equations




Fundamentals of continuous and discrete wavelets



Multiscaling



Classification of wavelet basis functions



Discrete wavelet transform



Lifting scheme for discrete wavelet transform



Lifting scheme to customize wavelets



Non-standard form of matrix and its solution



Multigrid method



References for further reading



7. Error - estimation




Introduction



A-priori error estimation



Recovery based error estimators



Residual based error estimators



Goal oriented error estimators



Hierarchical and wavelet based error estimator



References for further reading



Appendices

最近チェックした商品