Handbook of Energy Materials in Supercapacitors and Storage Devices

個数:
電子版価格
¥32,910
  • 電子版あり
  • ポイントキャンペーン

Handbook of Energy Materials in Supercapacitors and Storage Devices

  • ウェブストア価格 ¥51,793(本体¥47,085)
  • Wiley-Scrivener(2026/01発売)
  • 外貨定価 US$ 249.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 2,350pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 640 p.
  • 言語 ENG
  • 商品コード 9781119901037

Full Description

Accelerate your understanding of modern energy storage with this one-stop resource that provides a comprehensive guide to the basics, materials, and recent advancements in high-efficiency supercapacitor technology.

The increasing population, environmental pollution, and growing demand for energy underscores the importance of highly efficient energy storage devices. Supercapacitors, often referred to as ultracapacitors, have emerged as a pivotal technology in the realm of energy storage. Increasing demand for supercapacitors arises from the high energy density required by various modern applications like electric vehicles, UPS systems, wind turbines, space vehicles, regenerative braking, load leveling systems, etc. The above-mentioned applications require an improvement in working voltage (by preventing/reducing reaction between electrode and electrolyte surface), specific capacitance, and energy density (by increasing the surface area, addition of transition metal oxides/conducting polymers, etc.) of the existing supercapacitors. Global research is directed towards blending the high energy density of batteries with the high-power density of traditional capacitors, thereby enabling the supercapacitors to be ideal for applications demanding rapid charge and discharge cycles, high power output, and long cycle life.

This book is designed to cover the basics of supercapacitors and provide a current account of the recent advances in this field. It provides the basics of various materials, different stages of growth in this field, and recent developments, making it a one-stop resource for understanding and advancing the field of supercapacitor technology.

Readers will find in the volume;

A detailed explanation of the electrochemical processes and energy storage mechanisms in supercapacitors, with a detailed introduction to supercapacitors;
A comprehensive review of various electrode materials, including carbon-based materials, metal oxides, and conducting polymers;
A detailed discussion on different electrolyte types (aqueous, organic, and ionic liquids) and their impact on supercapacitor performance;
An exploration of the design considerations and manufacturing techniques for supercapacitors.

Audience

The book will be a valuable resource for researchers, engineers, and industry professionals involved in various fields, including electronics, automotive, renewable energy, and grid storage.

Contents

Preface xv

1 Introduction to Supercapacitors 1
Shebin Stephen, S. A. Ilangovan, Sujatha S., Bibin John, Ajeesh K. S. and C. Sarathchandran

1.1 Introduction 1

1.2 Conclusion 8

1.3 Acknowledgement 8

References 8

2 Electric Double-Layer Capacitors 11
Phuoc Anh Le

2.1 Introduction to Electric Double-Layer Supercapacitors 11

2.2 General Principles and Related Theories 12

2.3 Designing of Electric Double-Layer-Based Supercapacitors 15

2.3.1 Current Collector 16

2.3.2 Electrodes 17

2.3.3 Electrolyte 17

2.3.4 Separator 17

2.4 Applications 17

2.4.1 Power Electronics Systems 18

2.4.2 Vehicles 18

2.4.3 Renewable Energy 18

2.5 Recent Developments 18

2.5.1 Carbon-Based Electrode for EDLCs 19

2.5.2 Other Carbon Materials 23

2.6 Conclusions 24

References 25

3 Electrochemical Supercapacitors Based on Pseudocapacitance 35
Renu Dhahiya, Dinesh, Mukul Gupta, Parasmani Rajput, Pankaj Sharma and Ashok Kumar

3.1 Introduction 36

3.2 Theory of Pseudocapacitance 37

3.3 Design and Fabrication of Pseudocapacitors 39

3.3.1 Transition Metal Oxides Intercalation 40

3.3.2 Nanostructuring to Achieve Pseudocapacitance 41

3.3.3 MXenes 43

3.3.4 Carbon-Based Material 43

3.4 Self-Discharge and Potential Recovery in Pseudocapacitors 43

3.4.1 Methods for Reducing Self-Discharge and Potential Recovery 44

3.4.2 Tuning the Separator 46

3.4.3 Modulating the Electrolyte 46

3.5 Recent Advances in Pseudocapacitors 47

3.5.1 Transition Metal Oxide-Based Pseudocapacitor 47

3.5.2 Transition Metal Dichalcogenides (TMDCs)-Based Pseudocapacitance 48

3.5.3 Metal-Organic Frameworks (MOFs)-Based Pseudocapacitance 49

3.5.4 MXenes-Based Pseudocapacitance 49

3.5.5 Material Design Strategies for Pseudocapacitance 50

3.6 Application 53

3.6.1 Automobiles and Transport 54

3.6.2 Defense and Military 54

3.6.3 Computers and Memory Backup Chips 54

3.6.4 Medical and Industry 54

3.7 Future Trends 55

Acknowledgments 56

References 56

4 Porous Carbon-Based Materials for Supercapacitor Applications 65
Deeksha Nagpal, Anup Singh, Ajay Vasishth, Subha Pratihar, Ashok Kumar and Shyam Sundar Pattnaik

4.1 Introduction 66

4.2 Mechanism of Charge Storage in Carbon-Based Materials 67

4.2.1 Charge Storage in Porous Carbon 69

4.3 Self-Discharge and Potential Decay in Carbon-Based Materials 70

4.3.1 Distinctive Self-Discharge Methods 72

4.4 Carbon-Derived from Various Sources and their Performance Evaluations 74

4.4.1 Performance Evaluation of Carbon Derived Biomass Waste 74

4.4.2 Carbon Derived from Other Industrial Waste 77

4.4.3 Tire Waste 77

4.5 Recent Trends and Future Applications of Carbon-Based Material for Supercapacitors 78

4.5.1 Template Carbon Gel 78

4.5.2 Carbon-Based Materials and Its Composites 79

References 80

5 Porous Activated Carbon-Based Materials for Supercapacitor Applications 91
Surendra K. Martha, Sadananda Muduli and Tapan K. Pani

5.1 Introduction 92

5.2 Charge Storage Mechanism in Porous Carbon-Based Supercapacitors 93

5.3 Self-Discharge and Potential Decay in Carbon-Based Materials 100

5.4 Carbon Derived from Various Sources and Their Performance Evaluation 104

5.5 Recent Trends and Future Applications 118

Acknowledgements 119

References 120

6 Biomass-Based Carbon Nanomaterials for Energy Storage 129
Debajani Tripathy, Bibhuti B. Sahu, Ankita Subhrasmita Gadtya and Srikanta Moharana

6.1 Introduction 130

6.2 Overview of Carbon-Based Nanostructured Materials 132

6.3 Synthesis of Carbon-Based Nanostructure Materials 133

6.4 Synthetic Approach for Biomass-Derived Carbon 134

6.4.1 Graphene 134

6.4.2 Carbon Nanotube 135

6.4.3 Carbon Onion 136

6.4.4 Carbon Sphere 137

6.5 Surface Alternation of Carbon Nanostructured Materials 137

6.6 Biomass-Derived Carbon for Energy Conversion and Storage Systems 141

6.6.1 Electrocatalysis Applications 141

6.6.2 Supercapacitor Application 143

6.6.3 Rechargeable Batteries 148

6.6.4 Solar Cell 151

6.6.5 Organic Solar Cells 153

6.7 Future Challenges 154

6.8 Conclusions 155

Acknowledgments 155

References 155

7 Carbon Nanotube as Electrode Material for Supercapacitors 161
Sanjeev Verma, Tapas Das, Shivani Verma, Vikas Kumar Pandey, Saurabh Kumar Pandey, Juhi Singh and Bhawna Verma

7.1 Introduction 162

7.2 CNT (Carbon Nanotube) 162

7.3 Supercapacitor Electrodes Using Carbon Nanotube 164

7.4 Summary 168

References 169

8 Graphene-Based Polymeric Composites with Potential Applications in Supercapacitors 175
Ankita Subhrasmita Gadtya, Debajani Tripathy and Srikanta Moharana

8.1 Introduction 176

8.2 Overview of Graphene-Polymer Composites 178

8.2.1 Electrical Properties of Graphene-Based Polymer Composite 180

8.2.2 Thermal and Mechanical Properties of Graphene-Based Polymer Composites 182

8.3 Supercapacitors 183

8.3.1 Electro-Chemical Double Layer Capacitors (EDLCs) 185

8.3.2 Pseudo-Capacitors 186

8.3.3 Hybrid Capacitors 186

8.4 Graphene-Based Different Polymeric Composites 187

8.5 Graphene-Based Fluoropolymer Composites for SCs 187

8.6 Graphene-Based Conducting Polymer Composites for SCs 191

8.7 Conclusions 194

Acknowledgments 194

References 195

9 Graphene-Based Materials for Supercapacitor Applications 203
Vikas Kumar Pandey and Bhawna Verma

Introduction 203

Conclusion and Outlook 212

References 212

10 Metal Oxides and Their Role in Pseudocapacitors 219
Rutuja A. Chavan and Anil V. Ghule

Summary 219

10.1 General Introduction 220

10.2 Role of Metal Oxides 224

10.3 Different Types of Metal Oxides Explored in Supercapacitors 225

10.4 Performance Evaluation 226

10.4.1 RuO2 226

10.4.2 MnO2 229

10.4.3 NiO 233

10.4.4 Co3 O4 236

10.4.5 V2 O5 239

10.4.6 IrO2 240

10.5 Future Scope 242

References 244

11 Advances in Design and Application of Nanostructured TMOs and Their Composites for High-Performance Supercapacitors 255
Sheng Qiang Zheng, Siew Shee Lim, Maxine Swee-Li Yee, Chuan Yi Foo, Choon Yian Haw, Wee Siong Chiu, Chin Hua Chia and Poi Sim Khiew

11.1 Introduction 256

11.2 Electrochemical Role of Metal Oxides 260

11.3 Different Types of Metal Oxides as Electrode Materials 264

11.3.1 Metal Oxide-Based Nanomaterials for Supercapacitors 264

11.3.1.1 Metal Oxide Nanomaterials 265

11.3.1.2 Binary Metal Oxides 268

11.3.1.3 Ternary Metal Oxides 270

11.3.1.4 Carbonaceous Nanomaterials Decorated Metal Oxides 272

11.3.2 Metal-Organic Framework-Derived Porous Metal Oxide-Based Nanocomposites for Supercapacitor Applications 274

11.3.2.1 MOF-Derived Metal Oxides 274

11.3.2.2 MOF-Derived Carbon-Based Metal Oxide Nanocomposites 277

11.4 Performance Parameters of Electrochemical Capacitors 281

11.5 Conclusion and Future Perspectives 284

Acknowledgement 286

References 286

12 Ceramic Oxide Based Supercapacitors 295
Thangavelu Kokulnathan, Sabarison Pandiyarajan, Balasubramanian Sriram and Shobana Sebastin Mary Manickaraj

Introduction 296

Metal Oxide Ceramics 296

Vanadium Oxide 300

Manganese Oxide 301

Iron Oxide 303

Cobalt Oxide 304

Nickel Oxide 305

Aluminum Oxide 305

Spinel Oxide Ceramics 307

Multi-Elemental Oxide Ceramic 309

Past, Current, and Future Progress 310

References 312

13 Conductive Polymers and Composites for Supercapacitors: Recent Trends and Future Scope 325
Silki Sardana, A.S. Maan and Anil Ohlan

13.1 Introduction 325

13.2 CPs for Supercapacitors 328

13.3 CP-Based Composites for Supercapacitors 332

13.4 Recent Trends on CP-Based Supercapacitors 334

13.4.1 CP/2D Material-Based Composite 334

13.4.2 3D CP Hydrogels for Supercapacitors 334

13.5 CP-Based Flexible Supercapacitors 339

13.6 Future Scope of CP-Based Supercapacitors 342

13.7 Conclusions 342

References 343

14 Graphitic Carbon Nitride (g-C 3 N 4)-Based Materials for Supercapacitor Applications 351
Himadri Tanaya Das, Swapnamoy Dutta, Elango Balaji T., Payaswini Das and Nigamananda Das

14.1 Introduction 352

14.2 Different Carbon Materials as Electrodes in Supercapacitors 353

14.3 g-C3 N4 as Electrode Material in Supercapacitor 355

14.4 g-C3 N4 Composites and Their Use as Supercapacitors 358

14.5 Future Prospects 362

14.6 Conclusion 363

References 364

15 Introduction to MXenes for Supercapacitor Applications 371
Selcan Karakuş and Razium Ali Soomro

15.1 Introduction 372

15.2 Strategies for the Synthesis of 2D MXenes 374

15.3 MXene-Based Supercapacitors 378

15.4 Concluding Remarks and Future Perspectives 381

References 382

16 MXenes for Supercapacitor Applications 387
Mayank K. Singh, Sarathkumar Krishnan and Dhirendra K. Rai

16.1 Introduction 388

16.2 Synthesis Technique 390

16.2.1 Top-Down Approach 390

16.2.1.1 HF Etching 390

16.2.1.2 Hydroflouride Salt Etching 391

16.2.1.3 Alkali Etching 392

16.2.1.4 Electrochemical Etching 392

16.3 Bottom-Up Techniques 393

16.4 Properties of MXenes 393

16.4.1 Electrical Properties 393

16.4.2 Mechanical Properties 393

16.4.3 Chemical Stability 394

16.5 MXenes and Its Composites 395

16.5.1 Basic Principle and Mechanism 396

16.5.2 Bare MXenes as Supercapacitors 397

16.5.3 MXenes - Carbonaceous Composite as Supercapacitors 399

16.5.4 MXenes with Polymers 400

16.5.5 MXenes and Transition Metal Sulfides 402

16.5.6 MXenes-Metal Oxides-Based Supercapacitors 403

16.6 MXenes in Various Electrolytes 403

16.6.1 Basics and Neutral Electrolyte 403

16.6.2 Acidic Electrolyte 404

16.7 Challenges and Future Perspectives 404

Acknowledgment 405

References 405

17 Hybrid Supercapacitors: Recent Trends and Future Scope 415
Basudeba Maharana, Rajan Jha and Shyamal Chatterjee

17.1 Introduction 416

17.2 Types of Hybrid Supercapacitors 417

17.3 Components of Hybrid Supercapacitors 419

17.3.1 Electrode Materials 420

17.3.2 Electrolytes 421

17.3.3 Separator 422

17.3.4 Current Collector 422

17.3.5 Sealants 423

17.4 Recent Trends in HSCs 423

17.4.1 Composite Hybrids 424

17.4.2 Asymmetric Hybrids 424

17.4.3 Battery Supercapacitor Hybrids 425

17.4.4 Modern Trends 427

17.4.5 Supercapattery 429

17.5 Future Scopes and Challenges 431

17.5.1 Designing Electrode Materials 434

17.5.2 Resistance Issues in the Device 434

17.6 Conclusions 435

References 436

18 Electrolytes and Their Role in Supercapacitor Technology 445
Dipanwita Majumdar, Padma Sharma and Niki Sweta Jha

18.1 Introduction 446

18.1.1 Effect of the Electrolyte on Supercapacitor Performance 446

18.1.2 What is an Ideal Electrolyte? 448

18.1.3 Performance Controlling Parameters of the Electrolytes for Designing Flexible Supercapacitors 449

18.2 Classes of Electrolytes for Supercapacitors 450

18.2.1 Liquid Electrolytes 450

18.2.1.1 Aqueous Electrolytes 451

18.2.1.2 Nonaqueous Electrolytes 458

18.2.2 Solid and Quasi-Solid-Type Electrolytes 467

18.2.3 Redox-Active Electrolytes 472

18.3 Conclusions and Outlooks 476

Acknowledgments 479

References 479

19 Designing Supercapacitors and Supercapacitor Materials by Counting Ions 497
Shrisudersan Jayaraman

19.1 Introduction 498

19.2 Theoretical Framework 499

19.2.1 The Importance of Electrolyte Conductivity at Charged State 499

19.2.2 The Importance of Volumetric Specific Capacitance 501

19.2.3 Relationship Between the Device Capacitance and Volumetric Specific Capacitance of the Electrode 502

19.2.4 Electrolyte Utilization Factor 503

19.2.5 Critical Operating Conditions 509

19.2.6 Electrolyte Concentration at the Charged State 513

19.2.7 Electrolyte Conductivity at the Charged State 515

19.2.8 Counter-Ion Adsorption with Desolvated Ions in the Pores 517

19.2.9 Ion Exchange as the Primary Charging Mechanism with Desolvated Ions in the Pores 520

19.2.10 Connecting Theory and Practical Device Performance 522

19.2.11 Jelly Roll Characteristics and Electrolyte Saturation Volume 523

19.2.12 Excess Electrolyte Volume 527

19.3 Experimental Results and Discussion 528

19.3.1 Constant Current Discharge 528

19.3.2 Constant Power Discharging 531

19.4 Conclusions and Summary 534

19.5 Appendix: Experimental Details 537

19.5.1 Electrolyte 537

19.5.2 Supercapacitor Devices 537

19.5.3 Electrochemical Testing 538

Acknowledgement 539

References 539

20 Global Market, Applications, and Leading Suppliers for Supercapacitors: An Introduction 543
Shebin Stephen George and C. Sarathchandran

20.1 Introduction to the Global Market of Supercapacitors 543

20.2 Applications of Supercapacitors 545

20.2.1 Recycling of Supercapacitors 547

20.3 Safety Issues Associated with Supercapacitors 549

20.4 Conclusion 549

References 550

21 Applications of Supercapacitor 553
Raunak Pandey, Santhosh G., Sarvajith Malali Sudhakara, Nannan Wang and Santosh K. Tiwari

21.1 Introduction 554

21.2 Energy-Harvesting Sources 555

21.2.1 Vibration or Mechanical Energy Harvesting 556

21.2.2 Ocean Wave Energy 556

21.2.3 Radiofrequency 557

21.2.4 Solar Energy 557

21.2.5 Wind Energy 557

21.3 Applications of Supercapacitors 559

21.3.1 Electronics 559

21.3.2 Energy Buffers 560

21.3.3 Microgrids 561

21.3.4 Consumer Electronics 565

21.3.5 Mechanical Tools 567

21.3.6 Flashlights 568

21.3.7 Internet of Things 569

21.3.8 Wearable Electronics 573

21.3.9 Static Memories 576

21.4 Transport 576

21.4.1 Electrical and Hybrid Vehicles 577

21.4.2 Energy Recovery and Management in EVs 581

21.4.3 Regenerative Braking 583

21.5 Medical 586

21.6 Industrial 589

21.7 Military 591

21.8 Conclusion 593

Bibliography 593

Index 611

最近チェックした商品