R Programming for Mass Spectrometry : Effective and Reproducible Data Analysis

個数:
電子版価格
¥19,431
  • 電子版あり

R Programming for Mass Spectrometry : Effective and Reproducible Data Analysis

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 336 p.
  • 言語 ENG
  • 商品コード 9781119872351
  • DDC分類 519.50285

Full Description

A practical guide to reproducible and high impact mass spectrometry data analysis

R Programming for Mass Spectrometry teaches a rigorous and detailed approach to analyzing mass spectrometry data using the R programming language. It emphasizes reproducible research practices and transparent data workflows and is designed for analytical chemists, biostatisticians, and data scientists working with mass spectrometry.

Readers will find specific algorithms and reproducible examples that address common challenges in mass spectrometry alongside example code and outputs. Each chapter provides practical guidance on statistical summaries, spectral search, chromatographic data processing, and machine learning for mass spectrometry.

Key topics include:

Comprehensive data analysis using the Tidyverse in combination with Bioconductor, a widely used software project for the analysis of biological data
Processing chromatographic peaks, peak detection, and quality control in mass spectrometry data
Applying machine learning techniques, using Tidymodels for supervised and unsupervised learning, as well as for feature engineering and selection, providing modern approaches to data-driven insights
Methods for producing reproducible, publication-ready reports and web pages using RMarkdown

R Programming for Mass Spectrometry is an indispensable guide for researchers, instructors, and students. It provides modern tools and methodologies for comprehensive data analysis. With a companion website that includes code and example datasets, it serves as both a practical guide and a valuable resource for promoting reproducible research in mass spectrometry.

Contents

Foreword ix

Preface xi

Acknowledgments xv

About the Companion Website xvii

1 Data Analysis with R 1

1.1 Introduction 1

1.2 Modern R Programming 2

1.3 Bioconductor 17

1.4 Reproducible Data Analysis 18

1.5 Summary 20

2 Introduction to Mass Spectrometry Data Analysis 21

2.1 An Example of Mass Spectrometry Data Analysis 21

2.2 Using the Tidyverse in Mass Spectrometry 25

2.3 Dynamic Reports with R Markdown 39

2.4 Summary 40

3 Wrangling Mass Spectrometry Data 41

3.1 Introduction 41

3.2 Accessing Mass Spectrometry Data 41

3.3 Types of Mass Spectrometry Data 44

3.4 Result Data 58

3.5 Example of Wrangling Data: Identification Data 60

3.6 Wrangling Multiple Data Sources 63

3.7 Summary 74

4 Exploratory Data Analysis 75

4.1 Introduction 75

4.2 Exploring Tabular Data 75

4.3 Exploring Raw Mass Spectrometry Data 83

4.4 Chromatograms and Other Chemical Separations 101

4.5 Summary 112

5 Data Analysis of Mass Spectra 113

5.1 Introduction 113

5.2 Molecular Weight Calculations 114

5.3 Statistical Analysis of Spectra 124

5.4 Summary 150

6 Analysis of Chromatographic Data from Mass Spectrometers 151

6.1 Introduction 151

6.2 Chromatographic Peak Basics 151

6.3 Fundamentals of Peak Detection 160

6.4 Frequency Analysis 188

6.5 Quantification 207

6.6 Quality Control 226

6.7 Summary 229

7 Machine Learning in Mass Spectrometry 231

7.1 Introduction 231

7.2 Tidymodels 232

7.3 Feature Conditioning, Engineering, and Selection 233

7.4 Unsupervised Learning 244

7.5 Using Unsupervised Methods with Mass Spectra 247

7.6 Supervised Learning 256

7.7 Explaining Machine Learning Models 283

7.8 Summary 287

References 289

Index 301

最近チェックした商品