深層学習:実践的入門<br>Deep Learning : A Practical Introduction

個数:
電子版価格
¥13,896
  • 電子版あり

深層学習:実践的入門
Deep Learning : A Practical Introduction

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 416 p.
  • 言語 ENG
  • 商品コード 9781119861867
  • DDC分類 006.31

Full Description

An engaging and accessible introduction to deep learning perfect for students and professionals

In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples.

Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find:

Thorough introductions to deep learning and deep learning tools
Comprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architectures
Practical discussions of recurrent neural networks and non-supervised approaches to deep learning
Fulsome treatments of generative adversarial networks as well as deep Bayesian neural networks

Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.

Contents

About the Authors xv

Foreword xvii

Preface xix

Acknowledgment xxi

About the Companion Website xxiii

1 The Multilayer Perceptron 1

1.1 Introduction 1

1.2 The Concept of Neuron 2

1.3 Structure of a Neural Network 14

1.4 Activations 21

1.5 Training a Multilayer Perceptron 22

1.6 Conclusion 37

2 Training Practicalities 41

2.1 Introduction 41

2.2 Generalization and Overfitting 42

2.3 Regularization Techniques 45

2.4 Normalization Techniques 50

2.5 Optimizers 52

2.6 Conclusion 58

3 Deep Learning Tools 61

3.1 Python: An Overview 61

3.2 NumPy 72

3.3 Matplotlib 83

3.4 Scipy 97

3.5 Scikit-Learn 107

3.6 Pandas 116

3.7 Seaborn 125

3.8 Python Libraries for NLP 131

3.9 TensorFlow 138

3.10 Keras 141

3.11 Pytorch 144

3.12 Conclusion 149

4 Convolutional Neural Networks 153

4.1 Introduction 153

4.2 Elements of a Convolutional Neural Network 153

4.3 Training a CNN 160

4.4 Extensions of the CNN 166

4.5 Conclusion 184

5 Recurrent Neural Networks 187

5.1 Introduction 187

5.2 RNN Architecture 188

5.3 Training an RNN 191

5.4 Long-Term Dependencies: Vanishing and Exploding Gradients 199

5.5 Deep RNN 201

5.6 Bidirectional RNN 203

5.7 Long Short-Term Memory Networks 204

5.8 Gated Recurrent Units 218

5.9 Conclusion 221

6 Attention Networks and Transformers 225

6.1 Introduction 225

6.2 Attention Mechanisms 227

6.3 Transformers 242

6.4 BERT 249

6.5 GPT-2 256

6.6.1 Comparison between ViTs and CNNs 264

6.7 Conclusion 269

7 Deep Unsupervised Learning I 273

7.1 Introduction 273

7.2 Restricted Boltzmann Machines 274

7.3 Deep Belief Networks 278

7.4 Autoencoders 279

7.5 Undercomplete Autoencoder 284

7.6 Sparse Autoencoder 285

7.7 Denoising Autoencoders 287

7.8 Convolutional Autoencoder 288

7.9 Variational Autoencoders 291

7.10 Conclusion 297

8 Deep Unsupervised Learning II 301

8.1 Introduction 301

8.2 Elements of GAN 303

8.3 Training a GAN 305

8.4 Wasserstein GAN 309

8.5 DCGAN 312

8.6 cGAN 316

8.7 CycleGAN 318

8.8 StyleGAN 323

8.9 StackGAN 328

8.10 Diffusion Models 333

8.11 Conclusion 338

9 Deep Bayesian Networks 341

9.1 Introduction 341

9.2 Bayesian Models 342

9.3 Bayesian Inference Methods for Deep Learning 344

9.4 Conclusion 352

Problems 353

List of Acronyms 355

Notation 359

Bibliography 365

Index 387

最近チェックした商品