Machine Learning Algorithms for Signal and Image Processing

個数:
電子版価格
¥19,939
  • 電子版あり

Machine Learning Algorithms for Signal and Image Processing

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 512 p.
  • 言語 ENG
  • 商品コード 9781119861829
  • DDC分類 621.3822

Full Description

Machine Learning Algorithms for Signal and Image Processing Enables readers to understand the fundamental concepts of machine and deep learning techniques with interactive, real-life applications within signal and image processing

Machine Learning Algorithms for Signal and Image Processing aids the reader in designing and developing real-world applications using advances in machine learning to aid and enhance speech signal processing, image processing, computer vision, biomedical signal processing, adaptive filtering, and text processing. It includes signal processing techniques applied for pre-processing, feature extraction, source separation, or data decompositions to achieve machine learning tasks.

Written by well-qualified authors and contributed to by a team of experts within the field, the work covers a wide range of important topics, such as:

Speech recognition, image reconstruction, object classification and detection, and text processing
Healthcare monitoring, biomedical systems, and green energy
How various machine and deep learning techniques can improve accuracy, precision rate recall rate, and processing time
Real applications and examples, including smart sign language recognition, fake news detection in social media, structural damage prediction, and epileptic seizure detection

Professionals within the field of signal and image processing seeking to adapt their work further will find immense value in this easy-to-understand yet extremely comprehensive reference work. It is also a worthy resource for students and researchers in related fields who are looking to thoroughly understand the historical and recent developments that have been made in the field.

Contents

Section-1 Machine & Deep Learning techniques for Image Processing

1.1 Image Features in Machine Learning

1.2 Image Segmentation and Classification using Deep Learning

1.3 Deep Learning based Synthetic Aperture Radar Image Classification

1.4 Design Perspectives of Multitask Deep Learning Models and Applications

1.5 Image Reconstruction using Deep Learning

1.6 Machine and Deep Learning Techniques for Image Super-Resolution

Section-2 Machine & Deep Learning techniques for Text and Speech Processing

2.1 Machine and Deep Learning Techniques for Text and Speech Processing

2.2 Manipuri Handwritten Script Recognition using Machine and Deep Learning

2.3 Comparison of Different Text Extraction Techniques for Complex Color Images

2.4 Smart Text Reader System for Blind Person using Machine and Deep Learning

2.5 Machine Learning Techniques for Deaf People

2.6 Design and Development of Chatbot based on Reinforcement Learning

2.7 DNN based Speech Quality Enhancement and Multi-speaker Separation for Automatic Speech Recognition System

2.8 Design and Development of Real-Time Music Transcription using Digital Signal Processing

Section-3 Applications of Signal and Image Processing with Machine & Deep learning techniques

3.1 Role of Machine Learning in Wrist Pulse Analysis

3.2 An Explainable Convolutional Neural Network based Method for Skin Lesion Classification from Dermoscopic Images

3.3 Future of Machine-Learning and Deep-Learning in Health-Care Monitoring System

3.4 Usage of AI & Wearable IoT Devices for Healthcare Data: A Study

3.5 Impact of IoT in Biomedical Applications using Machine and Deep Learning

3.6 Wireless Communications using Machine Learning and Deep Learning

3.7 Applications of Machine Learning and Deep Learning in Smart Agriculture

3.8 Structural Damage Prediction from Earthquakes using Deep Learning

3.9 Machine Learning and Deep Learning Techniques in Social Sciences

3.1O Green Energy using Machine and Deep Learning

3.11 Light Deep CNN Approach for Multi-Label Pathology Classification using Frontal Chest X-Ray

Index

最近チェックした商品