Image Segmentation : Principles, Techniques, and Applications

個数:
電子版価格
¥18,441
  • 電子版あり

Image Segmentation : Principles, Techniques, and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 336 p.
  • 言語 ENG
  • 商品コード 9781119859000
  • DDC分類 621.367

Full Description

Image Segmentation Summarizes and improves new theory, methods, and applications of current image segmentation approaches, written by leaders in the field

The process of image segmentation divides an image into different regions based on the characteristics of pixels, resulting in a simplified image that can be more efficiently analyzed. Image segmentation has wide applications in numerous fields ranging from industry detection and bio-medicine to intelligent transportation and architecture.

Image Segmentation: Principles, Techniques, and Applications is an up-to-date collection of recent techniques and methods devoted to the field of computer vision. Covering fundamental concepts, new theories and approaches, and a variety of practical applications including medical imaging, remote sensing, fuzzy clustering, and watershed transform. In-depth chapters present innovative methods developed by the authors—such as convolutional neural networks, graph convolutional networks, deformable convolution, and model compression—to assist graduate students and researchers apply and improve image segmentation in their work.

Describes basic principles of image segmentation and related mathematical methods such as clustering, neural networks, and mathematical morphology.
Introduces new methods for achieving rapid and accurate image segmentation based on classic image processing and machine learning theory.
Presents techniques for improved convolutional neural networks for scene segmentation, object recognition, and change detection, etc.
Highlights the effect of image segmentation in various application scenarios such as traffic image analysis, medical image analysis, remote sensing applications, and material analysis, etc.

Image Segmentation: Principles, Techniques, and Applications is an essential resource for undergraduate and graduate courses such as image and video processing, computer vision, and digital signal processing, as well as researchers working in computer vision and image analysis looking to improve their techniques and methods.

Contents

Preface

About the Authors

List of Abbreviations

Part One: Principle

1   Introduction to Image Segmentation

2   Principles of Clustering

3   Principles of Mathematical Morphology

4   Principles of Neural Network

Part Two: Methods

5   Fast and Robust Image Segmentation Using Clustering

6   Fast Image Segmentation Using Watershed Transform

7   Superpixel-based Fast Image Segmentation

Part Three:  Application

8   Image Segmentation for Traffic Scene Analysis

9   Image Segmentation for Medical Analysis

10 Image Segmentation for Remote Sensing Analysis

11 Image Segmentation for Material Analysis