クオンツ取引術(第2版)<br>Quantitative Trading : How to Build Your Own Algorithmic Trading Business (Wiley Trading) (2ND)

個数:
電子版価格
¥4,775
  • 電子版あり

クオンツ取引術(第2版)
Quantitative Trading : How to Build Your Own Algorithmic Trading Business (Wiley Trading) (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9781119800064
  • DDC分類 332.64

Full Description

Master the lucrative discipline of quantitative trading with this insightful handbook from a master in the field

In the newly revised Second Edition of Quantitative Trading: How to Build Your Own Algorithmic Trading Business, quant trading expert Dr. Ernest P. Chan shows you how to apply both time-tested and novel quantitative trading strategies to develop or improve your own trading firm.

You'll discover new case studies and updated information on the application of cutting-edge machine learning investment techniques, as well as:



Updated back tests on a variety of trading strategies, with included Python and R code examples
A new technique on optimizing parameters with changing market regimes using machine learning.
A guide to selecting the best traders and advisors to manage your money

Perfect for independent retail traders seeking to start their own quantitative trading business, or investors looking to invest in such traders, this new edition of Quantitative Trading will also earn a place in the libraries of individual investors interested in exploring a career at a major financial institution.

Contents

Preface to the 2nd Edition xi

Preface xv

Acknowledgments xxi

Chapter 1: The Whats, Whos, and Whys of Quantitative Trading 1

Who Can Become a Quantitative Trader? 2

The Business Case for Quantitative Trading 4

Scalability 5

Demand on Time 5

The Nonnecessity of Marketing 7

The Way Forward 8

Chapter 2: Fishing for Ideas 11

How to Identify a Strategy that Suits You 14

Your Working Hours 14

Your Programming Skills 15

Your Trading Capital 15

Your Goal 19

A Taste for Plausible Strategies and Their Pitfalls 20

How Does It Compare with a Benchmark, and How Consistent Are Its Returns? 20

How Deep and Long Is the Drawdown? 23

How Will Transaction Costs Affect the Strategy? 24

Does the Data Suffer from Survivorship Bias? 26

How Did the Performance of the Strategy Change over the Years? 27

Does the Strategy Suffer from Data-Snooping Bias? 28

Does the Strategy "Fly under the Radar" of Institutional Money Managers? 30

Summary 30

References 31

Chapter 3: Backtesting 33

Common Backtesting Platforms 34

Excel 34

MATLAB 34

Python 36

R 38

QuantConnect 40

Blueshift 40

Finding and Using Historical Databases 40

Are the Data Split and Dividend Adjusted? 41

Are the Data Survivorship-Bias Free? 44

Does Your Strategy Use High and Low Data? 46

Performance Measurement 47

Common Backtesting Pitfalls to Avoid 57

Look-Ahead Bias 58

Data-Snooping Bias 59

Transaction Costs 72

Strategy Refinement 77

Summary 78

References 79

Chapter 4: Setting Up Your Business 81

Business Structure: Retail or Proprietary? 81

Choosing a Brokerage or Proprietary Trading Firm 85

Physical Infrastructure 87

Summary 89

References 91

Chapter 5: Execution Systems 93

What an Automated Trading System Can Do for You 93

Building a Semiautomated Trading System 95

Building a Fully Automated Trading System 98

Minimizing Transaction Costs 101

Testing Your System by Paper Trading 103

Why Does Actual Performance Diverge from Expectations? 104

Summary 107

Chapter 6: Money and Risk Management 109

Optimal Capital Allocation and Leverage 109

Risk Management 120

Model Risk 124

Software Risk 125

Natural Disaster Risk 125

Psychological Preparedness 125

Summary 130

Appendix: A Simple Derivation of the Kelly Formula when Return Distribution Is Gaussian 131

References 132

Chapter 7: Special Topics in Quantitative Trading 133

Mean-Reverting versus Momentum Strategies 134

Regime Change and Conditional Parameter Optimization 137

Stationarity and Cointegration 147

Factor Models 160

What Is Your Exit Strategy? 169

Seasonal Trading Strategies 174

High-Frequency Trading Strategies 186

Is it Better to Have a High-Leverage versus a High-Beta Portfolio? 188

Summary 190

References 192

Chapter 8: Conclusion 193

Next Steps 197

References 198

Appendix: A Quick Survey of MATLAB 199

Bibliography 205

About the Author 209

Index 211

最近チェックした商品