マルチメディア・データのための教師あり・教師なしデータ工学<br>Supervised and Unsupervised Data Engineering for Multimedia Data

個数:
電子版価格
¥23,969
  • 電子版あり

マルチメディア・データのための教師あり・教師なしデータ工学
Supervised and Unsupervised Data Engineering for Multimedia Data

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 336 p.
  • 言語 ENG
  • 商品コード 9781119786344
  • DDC分類 006.7

Full Description

SUPERVISED and UNSUPERVISED DATA ENGINEERING for MULTIMEDIA DATA Explore the cutting-edge realms of data engineering in multimedia with Supervised and Unsupervised Data Engineering for Multimedia Data, where expert contributors delve into innovative methodologies, offering invaluable insights to empower both novices and seasoned professionals in mastering the art of manipulating multimedia data with precision and efficiency.

Supervised and Unsupervised Data Engineering for Multimedia Data presents a groundbreaking exploration into the intricacies of handling multimedia data through the lenses of both supervised and unsupervised data engineering. Authored by a team of accomplished experts in the field, this comprehensive volume serves as a go-to resource for data scientists, computer scientists, and researchers seeking a profound understanding of cutting-edge methodologies.

The book seamlessly integrates theoretical foundations with practical applications, offering a cohesive framework for navigating the complexities of multimedia data. Readers will delve into a spectrum of topics, including artificial intelligence, machine learning, and data analysis, all tailored to the challenges and opportunities presented by multimedia datasets. From foundational principles to advanced techniques, each chapter provides valuable insights, making this book an essential guide for academia and industry professionals alike. Whether you're a seasoned practitioner or a newcomer to the field, Supervised and Unsupervised Data Engineering for Multimedia Data illuminates the path toward mastery in manipulating and extracting meaningful insights from multimedia data in the modern age.

Contents

List of Figures xiii

List of Tables xix

Preface xxi

1 SLRRT: Sign Language Recognition in Real Time 1
Monika Lamba and Geetika Munjal

2 Unsupervised/Supervised Feature Extraction and Feature Selection for Multimedia Data
(Feature extraction with feature selection for Image Forgery Detection) 27
Arun Anoop M., Karthikeyan P. and S. Poonkuntran

3 Multimedia Data in Healthcare System 63
Sarita Gulia, Pallavi Pandey and Yogita Yashveer Raghav

4 Automotive Vehicle Data Security Service in IoT Using ACO Algorithm 93
Sivanantham, K. and Blessington Praveen, P.

5 Unsupervised/Supervised Algorithms for Multimedia Data in Smart Agriculture 111
Reena Thakur, Parul Bhanarkar and Uma Patel Thakur

6 Secure Medical Image Transmission Using 2-D Tent Cascade Logistic Map 133
L. R. Jonisha Miriam, A. Lenin Fred, S. N. Kumar, Ajay Kumar H., I. Christina Jane, Parasuraman Padmanabhan and Balázs Gulyás

7 Personalized Multi-User-Based Movie and Video Recommender System: A Deep Learning Perspective 149
Jayaramu H. K., Suman Kumar Maji and Hussein Yahia

8 Sensory Perception of Haptic Rendering in Surgical Simulation 177
Rachit Sachdeva, Eva Kaushik, Sarthak Katyal, Krishan Kant Choudhary and Rohit Kaushik

9 Multimedia Data in Modern Education 189
Roopashree, Praveen Kumar M., Pavanalaxmi, Prameela N. S. and Mehnaz Fathima

10 Assessment of Adjusted and Normalized Mutual Information Variants for Band Selection in Hyperspectral Imagery 217
Bhagyashree Chopade, Vikas Gupta and Divyesh Varade

11 A Python-Based Machine Learning Classification Approach for Healthcare Applications 247
Vishal Sharma

12 Supervised and Unsupervised Learning Techniques for Biometric Systems 263
Pallavi Pandey, Yogita Yashveer Raghav, Sarita Gulia, Sagar Aggarwal and Nitin Kumar

About the Editors 301

Index 303

最近チェックした商品