Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number (Ieee Press Series on Systems Science and Engineering)

個数:
電子版価格
¥13,580
  • 電子版あり

Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number (Ieee Press Series on Systems Science and Engineering)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 208 p.
  • 言語 ENG
  • 商品コード 9781119491552
  • DDC分類 621

Full Description

An original, systematic-solution approach to uncertain nonlinear systems control and modeling using fuzzy equations and fuzzy differential equations

There are various numerical and analytical approaches to the modeling and control of uncertain nonlinear systems. Fuzzy logic theory is an increasingly popular method used to solve inconvenience problems in nonlinear modeling. Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number presents a structured approach to the control and modeling of uncertain nonlinear systems in industry using fuzzy equations and fuzzy differential equations.

The first major work to explore methods based on neural networks and Bernstein neural networks, this innovative volume provides a framework for control and modeling of uncertain nonlinear systems with applications to industry. Readers learn how to use fuzzy techniques to solve scientific and engineering problems and understand intelligent control design and applications. The text assembles the results of four years of research on control of uncertain nonlinear systems with dual fuzzy equations, fuzzy modeling for uncertain nonlinear systems with fuzzy equations, the numerical solution of fuzzy equations with Z-numbers, and the numerical solution of fuzzy differential equations with Z-numbers. Using clear and accessible language to explain concepts and principles applicable to real-world scenarios, this book:



Presents the modeling and control of uncertain nonlinear systems with fuzzy equations and fuzzy differential equations
Includes an overview of uncertain nonlinear systems for non-specialists
Teaches readers to use simulation, modeling and verification skills valuable for scientific research and engineering systems development
Reinforces comprehension with illustrations, tables, examples, and simulations

Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number is suitable as a textbook for advanced students, academic and industrial researchers, and practitioners in fields of systems engineering, learning control systems, neural networks, computational intelligence, and fuzzy logic control.

Contents

List of Figures xi

List of Tables xiii

Preface xv

1 Fuzzy Equations 1

1.1 Introduction 1

1.2 Fuzzy Equations 1

1.3 Algebraic Fuzzy Equations 3

1.4 Numerical Methods for Solving Fuzzy Equations 5

1.4.1 Newton Method 5

1.4.2 Steepest Descent Method 7

1.4.3 Adomian Decomposition Method 8

1.4.4 Ranking Method 9

1.4.5 Intelligent Methods 10

1.4.5.1 Genetic Algorithm Method 10

1.4.5.2 Neural Network Method 11

1.4.5.3 Fuzzy Linear Regression Model 14

1.5 Summary 20

2 Fuzzy Differential Equations 21

2.1 Introduction 21

2.2 Predictor-Corrector Method 21

2.3 Adomian Decomposition Method 23

2.4 Euler Method 23

2.5 Taylor Method 25

2.6 Runge-Kutta Method 25

2.7 Finite Difference Method 26

2.8 Differential Transform Method 28

2.9 Neural Network Method 29

2.10 Summary 36

3 Modeling and Control Using Fuzzy Equations 39

3.1 Fuzzy Modeling with Fuzzy Equations 39

3.1.1 Fuzzy Parameter Estimation with Neural Networks 45

3.1.2 Upper Bounds of the Modeling Errors 48

3.2 Control with Fuzzy Equations 52

3.3 Simulations 59

3.4 Summary 67

4 Modeling and Control Using Fuzzy Differential Equations 69

4.1 Introduction 69

4.2 Fuzzy Modeling with Fuzzy Differential Equations 69

4.3 Existence of a Solution 72

4.4 Solution Approximation using Bernstein Neural Networks 79

4.5 Solutions Approximation using the Fuzzy Sumudu Transform 83

4.6 Simulations 85

4.7 Summary 99

5 System Modeling with Partial Differential Equations 101

5.1 Introduction 101

5.2 Solutions using Burgers-Fisher Equations 101

5.3 Solution using Wave Equations 106

5.4 Simulations 109

5.5 Summary 117

6 System Control using Z-numbers 119

6.1 Introduction 119

6.2 Modeling using Dual Fuzzy Equations and Z-numbers 119

6.3 Controllability using Dual Fuzzy Equations 124

6.4 Fuzzy Controller 128

6.5 Nonlinear System Modeling 131

6.6 Controllability using Fuzzy Differential Equations 131

6.7 Fuzzy Controller Design using Fuzzy Differential Equations and Z-number 135

6.8 Approximation using a Fuzzy Sumudu Transform and Z-numbers 138

6.9 Simulations 139

6.10 Summary 151

References 153

Index 167

最近チェックした商品