マルチエージェントシステムの協調制御:理論と応用<br>Cooperative Control of Multi-Agent Systems : Theory and Applications

個数:
電子版価格
¥18,719
  • 電子版あり

マルチエージェントシステムの協調制御:理論と応用
Cooperative Control of Multi-Agent Systems : Theory and Applications

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9781119266129
  • DDC分類 006.3

Full Description

A comprehensive review of the state of the art in the control of multi-agent systems theory and applications

The superiority of multi-agent systems over single agents for the control of unmanned air, water and ground vehicles has been clearly demonstrated in a wide range of application areas. Their large-scale spatial distribution, robustness, high scalability and low cost enable multi-agent systems to achieve tasks that could not successfully be performed by even the most sophisticated single agent systems.

Cooperative Control of Multi-Agent Systems: Theory and Applications provides a wide-ranging review of the latest developments in the cooperative control of multi-agent systems theory and applications. The applications described are mainly in the areas of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). Throughout, the authors link basic theory to multi-agent cooperative control practice — illustrated within the context of highly-realistic scenarios of high-level missions — without losing site of the mathematical background needed to provide performance guarantees under general working conditions. Many of the problems and solutions considered involve combinations of both types of vehicles. Topics explored include target assignment, target tracking, consensus, stochastic game theory-based framework, event-triggered control, topology design and identification, coordination under uncertainty and coverage control.



Establishes a bridge between fundamental cooperative control theory and specific problems of interest in a wide range of applications areas
Includes example applications from the fields of space exploration, radiation shielding, site clearance, tracking/classification, surveillance, search-and-rescue and more
Features detailed presentations of specific algorithms and application frameworks with relevant commercial and military applications
Provides a comprehensive look at the latest developments in this rapidly evolving field, while offering informed speculation on future directions for collective control systems

The use of multi-agent system technologies in both everyday commercial use and national defense is certain to increase tremendously in the years ahead, making this book a valuable resource for researchers, engineers, and applied mathematicians working in systems and controls, as well as advanced undergraduates and graduate students interested in those areas.

Contents

List of Contributors xiii 

Preface xvii 

Acknowledgment xix 

1 Introduction 1 
Yue Wang, Eloy Garcia, David Casbeer and Fumin Zhang 

1.1 Introduction 1 

1.2 Chapter Summary and Contributions 11 

References 17 

2 Sensor Placement Algorithms for a Path Covering Problem 31 
Sivakumar Rathinam and Rajnikant Sharma 

2.1 Problem Statement 34 

2.2 Algorithm Approx 1 35 

2.2.1 Algorithm for Targets That Lie Within a Strip 36 

2.2.2 Algorithm for a General Set of Points 37 

2.2.3 Proof of the Approximation Ratio 38 

2.3 Algorithm Approx 2 42 

2.4 Numerical Results 46 

2.5 Conclusions 48 

References 48 

3 Robust Coordination of Small UAVs for Vision-Based Target Tracking Using Output-Feedback MPC with MHE 51 
Steven A. P. Quintero, David A. Copp, and João P.  Hespanha 

3.1 Vision-Based Target Tracking 53 

3.2 Problem Formulation 58 

3.2.1 UAV Dynamics 58 

3.2.2 Target Dynamics and Overall State Space 61 

3.2.3 Measurement Error Models 62 

3.3 Robust Output-Feedback MPC/MHE 64 

3.4 Simulation Results 67 

3.4.1 Constant-Velocity Target 70 

3.4.2 Evasive Target 73 

3.4.3 Experimental Target Log 76 

3.5 Conclusion and Future Work 79 

References 80 

4 Projection-Based Consensus for Time-Critical Coordination of Unmanned Aerial Vehicles under Velocity Constraints 85 
Xiaofeng Wang, Eloy Garcia, Zheqing Zhou, Derek KingstonandDavid Casbeer 

4.1 Introduction 85 

4.2 Problem Statement 87 

4.2.1 Notations 87 

4.2.2 Problem Formulation 88 

4.3 Projection-Based Consensus Algorithm 89 

4.4 Convergence Analysis 91 

4.5 Convergence Time 96 

4.6 Feasibility 101 

4.7 Simulation 104 

4.8 Summary 110 

References 111 

5 Greedy Maximization for Asset-Based Weapon-Target Assignment with Time-Dependent Rewards 115 
Doo-Hyun Cho and Han-Lim Choi 

5.1 Introduction 115 

5.2 Problem Formulation 117 

5.2.1 Problem Variables 119 

5.2.2 Constraints 119 

5.2.3 Objective Function 120 

5.3 Properties of the Objective Function 120 

5.3.1 Preliminary—Greedy Algorithm 121 

5.3.2 Preliminary—Maximization of Set Function 121 

5.3.3 Weapon Target Assignment—Lower Bound with Greedy Algorithm 122 

5.4 Algorithmic Details 126 

5.4.1 Time Slot Generation 126 

5.4.2 Greedy Maximization 127 

5.5 Numerical Case Studies 128 

5.5.1 Simple TSWTA Example 128 

5.5.2 Realistic Interceptor-Ballistic Target Assignment 134 

5.6 Conclusion 136 

Acknowledgment 136 

References 137 

6 Coordinated Threat Assignments and Mission Management of Unmanned Aerial Vehicles 141 
Eloy Garcia and David Casbeer 

6.1 Introduction 141 

6.2 Problem Statement 144 

6.2.1 Preliminaries 144 

6.2.2 Mission Description 144 

6.3 Decentralized Assignment of Threats 148 

6.3.1 Optimal Individual Paths and Selections 148 

6.3.2 Decentralized Assignment Algorithm 150 

6.4 Assignment Constraints 153 

6.4.1 Timing Constraints 154 

6.4.2 Coupled Decision Making 158 

6.5 Multiple Main Targets 163 

6.6 Conclusions 172 

References 172 

7 Event-Triggered Communication and Control for Multi-Agent Average Consensus 177 
Cameron Nowzari, Jorge Cortes and George J. Pappas 

7.1 Introduction 177 

7.1.1 Organization 178 

7.2 Preliminaries 181 

7.2.1 Event-Triggered Control of Linear Systems 182 

7.3 Problem Statement 185 

7.4 Centralized Event-Triggered Control 186 

7.5 Decentralized Event-Triggered Control 188 

7.6 Decentralized Event-Triggered Communication and Control 192 

7.6.1 Directed Graphs 196 

7.7 Periodic Event-Triggered Coordination 199 

7.8 Conclusions and Future Outlook 201 

References 202 

Appendix 205 

8 Topology Design and Identification for Dynamic Networks 209 
Chuangchuang Sun and Ran Dai 

8.1 Introduction 209 

8.2 Network Topology Design Problems 212 

8.2.1 Network Design for Fast Convergence of Consensus Protocol 213 

8.2.2 Network Design for Minimum Total Effective Resistance 215 

8.2.3 Equivalent Conversion from Cardinality-Constrained Optimization Problems to RCOPs 216 

8.3 Network Topology Identification Problems 216 

8.3.1 LTI System Identification 216 

8.3.2 Formulation of NTIs as QCQPs 219 

8.3.3 Equivalent Conversion from QCQPs to RCOPs 220 

8.4 Iterative Rank Minimization Approach 221 

8.5 Simulation Examples 224 

8.5.1 Example for Designing Fast Converging Consensus-based Network 225 

8.5.2 Example for Designing Minimum Total Effective Resistance Network 226 

8.5.3 Example of NTI with Agent Dynamics Driven by Consensus Protocol 227 

8.6 Conclusions 231 

References 232 

9 Distributed Multi-Agent Coordination with Uncertain Interactions: A Probabilistic Perspective 237 
Yongcan Cao, David Casbeer, Eloy Garcia and Corey Schumacher 

9.1 Introduction 237 

9.2 Preliminaries 239 

9.2.1 Graph Theory Notions 239 

9.2.2 Problem Statement 240 

9.3 Fixed Interaction Graph 241 

9.3.1 Equal Possibility 242 

9.3.2 Unequal Possibility 249 

9.4 Switching Interaction Graph 253 

9.5 Conclusion 262 

References 262 

10 Awareness Coverage Control in Unknown Environments Using Heterogeneous Multi-Robot Systems 265 
Yue Wang and Li Wang 

10.1 Introduction 265 

10.2 Problem Formulation 268 

10.2.1 Robot Models 268 

10.2.2 Sensor Models 270 

10.2.3 Communication Strategies 272 

10.2.4 State of Awareness Dynamics 273 

10.3 Cooperative Control of Heterogeneous Multi-Robot Systems 275 

10.3.1 Motion Control for Boundary-Tracking UAVs 275 

10.3.2 Awareness Coverage Control for Coverage Robots 275 

10.3.2.1 Awareness Metric 275 

10.3.2.2 Domain Coverage Algorithm 276 

10.4 Simulation Results 284 

10.5 Conclusion 287 

References 287 

Index 291

最近チェックした商品