Decision Analytics and Optimization in Disease Prevention and Treatment (Wiley Series in Operations Research and Management Science)

個数:
電子版価格
¥17,034
  • 電子版あり

Decision Analytics and Optimization in Disease Prevention and Treatment (Wiley Series in Operations Research and Management Science)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 432 p.
  • 言語 ENG
  • 商品コード 9781118960127
  • DDC分類 616.9

Full Description

A systematic review of the most current decision models and techniques for disease prevention and treatment 

Decision Analytics and Optimization in Disease Prevention and Treatment offers a comprehensive resource of the most current decision models and techniques for disease prevention and treatment. With contributions from leading experts in the field, this important resource presents information on the optimization of chronic disease prevention, infectious disease control and prevention, and disease treatment and treatment technology. Designed to be accessible, in each chapter the text presents one decision problem with the related methodology to showcase the vast applicability of operations research tools and techniques in advancing medical decision making.

This vital resource features the most recent and effective approaches to the quickly growing field of healthcare decision analytics, which involves cost-effectiveness analysis, stochastic modeling, and computer simulation. Throughout the book, the contributors discuss clinical applications of modeling and optimization techniques to assist medical decision making within complex environments. Accessible and authoritative, Decision Analytics and Optimization in Disease Prevention and Treatment: 



Presents summaries of the state-of-the-art research that has successfully utilized both decision analytics and optimization tools within healthcare operations research
Highlights the optimization of chronic disease prevention, infectious disease control and prevention, and disease treatment and treatment technology
Includes contributions by well-known experts from operations researchers to clinical researchers, and from data scientists to public health administrators
Offers clarification on common misunderstandings and misnomers while shedding light on new approaches in this growing area

Designed for use by academics, practitioners, and researchers, Decision Analytics and Optimization in Disease Prevention and Treatment offers a comprehensive resource for accessing the power of decision analytics and optimization tools within healthcare operations research.

Contents

Contributors xiii 

Preface xvii 

Part 1 Infectious Disease Control and Management 1 

1 Optimization in Infectious Disease Control and Prevention: Tuberculosis Modeling Using Microsimulation 3
Sze-chuan Suen 

1.1 Tuberculosis Epidemiology and Background 4 

1.1.1 TB in India 5 

1.2 Microsimulations for Disease Control 6 

1.3 A Microsimulation for Tuberculosis Control in India 8 

1.3.1 Population Dynamics 9 

1.3.2 Dynamics of TB in India 9 

1.3.3 Activation 10 

1.3.4 TB Treatment 11 

1.3.5 Probability Conversions 13 

1.3.6 Calibration and Validation 14 

1.3.7 Intervention Policies and Analysis 16 

1.3.8 Time Horizons and Discounting 18 

1.3.9 Incremental Cost-Effectiveness Ratios and Net Monetary Benefits 19 

1.3.10 Sensitivity Analysis 22 

1.4 Conclusion 22 

References 23 

2 Saving Lives with Operations Research: Models to Improve HIV Resource Allocation 25
Sabina S. Alistar and Margaret L. Brandeau 

2.1 Introduction 25 

2.1.1 Background 25 

2.1.2 Modeling Approaches 27 

2.1.3 Chapter Overview 31 

2.2 HIV Resource Allocation: Theoretical Analyses 31 

2.2.1 Defining the Resource Allocation Problem 31 

2.2.2 Production Functions for Prevention and Treatment Programs 35 

2.2.3 Allocating Resources among Prevention and Treatment Programs 37 

2.3 HIV Resource Allocation: Portfolio Analyses 39 

2.3.1 Portfolio Analysis 39 

2.3.2 Opiate Substitution Therapy and ART in Ukraine 40 

2.3.3 Pre-exposure Prophylaxis and ART 42 

2.4 HIV Resource Allocation: A Tool for Decision Makers 44 

2.4.1 REACH Model Overview 44 

2.4.2 Example Analysis: Brazil 45 

2.4.3 Example Analysis: Thailand 48 

2.5 Discussion and Further Research 50 

Acknowledgment 53 

References 53 

3 Adaptive Decision-Making During Epidemics 59
Reza Yaesoubi and Ted Cohen 

3.1 Introduction 59 

3.2 Problem Formulation 61 

3.3 Methods 63 

3.3.1 The 1918 Influenza Pandemic in San Francisco, CA 63 

3.3.2 Stochastic Transmission Dynamic Models 64 

3.3.3 Calibration 66 

3.3.4 Optimizing Dynamic Health Policies 69 

3.4 Numerical Results 73 

3.5 Conclusion 75 

Acknowledgments 76 

References 76 

4 Assessing Register-Based Chlamydia Infection Screening Strategies: A Cost-Effectiveness Analysis on Screening Start/End Age and Frequency 81
Yu Teng, Nan Kong, and Wanzhu Tu 

4.1 Introduction 81 

4.2 Background Literature Review 83 

4.2.1 Clinical Background on CT Infection and Control 83 

4.2.2 CT Screening Programs 85 

4.2.3 Computational Modeling on CT Transmission and Control 85 

4.3 Mathematical Modeling 89 

4.3.1 An Age-Structured Compartmental Model 89 

4.3.2 Model Parameterization and Validation 93 

4.4 Strategy Assessment 98 

4.4.1 Base-Case Assessment 98 

4.4.2 Sensitivity Analysis 100 

4.5 Conclusions and Future Research 101 

References 102 

5 Optimal Selection of Assays for Detecting Infectious Agents in Donated Blood 109
Ebru K. Bish, Hadi El-Amine, Douglas R. Bish, Susan L. Stramer, and Anthony D. Slonim 

5.1 Introduction and Challenges 109 

5.1.1 Introduction 109 

5.1.2 The Challenges 111 

5.2 The Notation and Decision Problem 113 

5.2.1 Notation 114 

5.2.2 Measures of Interest 115 

5.2.3 Model Formulation 117 

5.2.4 Relationship of the Proposed Mathematical Models to Cost-Effectiveness Analysis 118 

5.3 The Case Study of the Sub-Saharan Africa Region and the United States 119 

5.3.1 Uncertainty in Prevalence Rates 122 

5.4 Contributions and Future Research Directions 123 

Acknowledgments 123 

References 124 

6 Modeling Chronic Hepatitis C During Rapid Therapeutic Advance: Cost-Effective Screening, Monitoring, and Treatment Strategies 129
Shan Liu 

6.1 Introduction 129 

6.2 Method 131 

6.2.1 Modeling Disease Natural History and Intervention 132 

6.2.2 Estimating Parameters for Disease Progression and Death 134 

6.3 Four Research Areas in Designing Effective HCV Interventions 139 

6.3.1 Cost-Effective Screening and Treatment Strategies 139 

6.3.2 Cost-Effective Monitoring Guidelines 141 

6.3.3 Optimal Treatment Adoption Decisions 141 

6.3.4 Optimal Treatment Delivery in Integrated Healthcare Systems 145 

6.4 Concluding Remarks 148 

References 148 

Part 2 Noncommunicable Disease Prevention 153 

7 Modeling Disease Progression and Risk-Differentiated Screening for Cervical Cancer Prevention 155
Adriana Ley-Chavez and Julia L. Higle 

7.1 Introduction 155 

7.2 Literature Review 157 

7.3 Modeling Cervical Cancer Screening 159 

7.3.1 Model Components 160 

7.3.2 Parameter Selection 166 

7.3.3 Implementation 169 

7.4 Model-Based Analyses 171 

7.4.1 Cost-Effectiveness Analysis 171 

7.4.2 Sensitivity Analysis 172 

7.5 Concluding Remarks 174 

References 175 

8 Using Finite-Horizon Markov Decision Processes for Optimizing Post-Mammography Diagnostic Decisions 183
Sait Tunc, Oguzhan Alagoz, Jagpreet Chhatwal, and Elizabeth S. Burnside 

8.1 Introduction 183 

8.2 Model Formulations 185 

8.3 Structural Properties 188 

8.4 Numerical Results 193 

8.5 Summary 196 

Acknowledgments 196 

References 197 

9 Partially Observable Markov Decision Processes for Prostate Cancer Screening, Surveillance, and Treatment: A Budgeted Sampling Approximation Method 201
Jingyu Zhang and Brian T. Denton 

9.1 Introduction 201 

9.2 Review of POMDP Models and Benchmark Algorithms 204 

9.3 A POMDP Model for Prostate Cancer Screening, Surveillance, and Treatment 206 

9.4 Budgeted Sampling Approximation 209 

9.4.1 Lower and Upper Bounds 209 

9.4.2 Summary of the Algorithm 211 

9.5 Computational Experiments 213 

9.5.1 Finite-Horizon Test Instances 213 

9.5.2 Computational Experiments 214 

9.6 Conclusions 217 

References 219 

10 Cost-Effectiveness Analysis of Breast Cancer Mammography Screening Policies Considering Uncertainty in Women's Adherence 223
Mahboubeh Madadi and Shengfan Zhang 

10.1 Introduction 223 

10.2 Model Formulation 225 

10.3 Numerical Studies 231 

10.4 Results 233 

10.4.1 Perfect Adherence Case 233 

10.4.2 General Population Adherence Case 234 

10.5 Summary 236 

References 237 

11 An Agent-Based Model for Ideal Cardiovascular Health 241
Yan Li, Nan Kong, Mark A. Lawley, and José A. Pagán 

11.1 Introduction 241 

11.2 Methodology 243 

11.2.1 Agent-Based Modeling 243 

11.2.2 Model Structure 244 

11.2.3 Parameter Estimation 246 

11.2.4 User Interface 248 

11.2.5 Model Validation 249 

11.3 Results 250 

11.3.1 Simulating American Adults 250 

11.4 Simulating the Medicare-Age Population and the Disease-Specific Subpopulations 252 

11.5 Future Research 254 

11.6 Summary 255 

References 255 

Part 3 Treatment Technology and System 259 

12 Biological Planning Optimization for High-Dose-Rate Brachytherapy and its Application to Cervical Cancer Treatment 261
Eva K. Lee, Fan Yuan, Alistair Templeton, Rui Yao, Krystyna Kiel, and James C.H. Chu 

12.1 Introduction 261 

12.2 Challenges and Objectives 263 

12.3 Materials and Methods 265 

12.3.1 High-Dose-Rate Brachytherapy 265 

12.3.2 PET Image 266 

12.3.3 Novel OR-Based Treatment-Planning Model 266 

12.3.4 Computational Challenges and Solution Strategies 271 

12.4 Validation and Results 273 

12.5 Findings, Implementation, and Challenges 276 

12.6 Impact and Significance 279 

12.6.1 Quality of Care and Quality of Life for Patients 279 

12.6.2 Advancing the Cancer Treatment Frontier 279 

12.6.3 Advances in Operations Research Methodologies 280 

Acknowledgment 281 

References 281 

13 Fluence Map Optimization in Intensity-Modulated Radiation Therapy Treatment Planning 285
Dionne M. Aleman 

13.1 Introduction 285 

13.2 Treatment Plan Evaluation 288 

13.2.1 Physical Dose Measures 289 

13.2.2 Biological Dose Measures 291 

13.3 FMO Optimization Models 292 

13.3.1 Objective Functions 293 

13.3.2 Constraints 295 

13.3.3 Robust Formulation 297 

13.4 Optimization Approaches 299 

13.5 Conclusions 300 

References 301 

14 Sliding Window IMRT and VMAT Optimization 307
David Craft and Tarek Halabi 

14.1 Introduction 307 

14.2 Two-Step IMRT Planning 309 

14.3 One-Step IMRT Planning 310 

14.3.1 One-Step Sliding Window Optimization 310 

14.4 Volumetric Modulated ARC Therapy 313 

14.5 Future Work for Radiotherapy Optimization 315 

14.5.1 Custom Solver for Radiotherapy 315 

14.5.2 Incorporating Additional Hardware Considerations into Sliding Window VMAT Planning 315 

14.5.3 Trade-Off between Delivery Time and Plan Quality 316 

14.5.4 What Do We Optimize? 316 

14.6 Concluding Thoughts 317 

References 318 

15 Modeling the Cardiovascular Disease Prevention-Treatment Trade-Off 323
George Miller 

15.1 Introduction 323 

15.2 Methods 325 

15.2.1 Model Overview 325 

15.2.2 Model Structure 327 

15.2.3 Model Inputs 331 

15.3 Results 334 

15.3.1 Base Case 334 

15.3.2 Interaction between Prevention and Treatment Spending 335 

15.3.3 Impact of Discount Rate on Cost-Effectiveness 336 

15.3.4 Optimal Spending mix 337 

15.3.5 Impact of Prevention Lag on Optimal mix 338 

15.3.6 Impact of Discount Rate on Optimal mix 340 

15.3.7 Impact of Time Horizon on Optimal mix 340 

15.3.8 Impacts of Research 341 

15.4 Discussion 344 

Acknowledgment 346 

References 346 

16 Treatment Optimization for Patients with Type 2 Diabetes 349
Jennifer Mason Lobo 

16.1 Introduction 349 

16.2 Literature Review 350 

16.3 Model Formulation 353 

16.3.1 Decision Epochs 354 

16.3.2 States 354 

16.3.3 Actions 355 

16.3.4 Probabilities 355 

16.3.5 Rewards 356 

16.3.6 Value Function 356 

16.4 Numerical Results 357 

16.4.1 Model Inputs 357 

16.4.2 Optimal Treatment Policies to Reduce Polypharmacy 358 

16.5 Conclusions 362 

References 363 

17 Machine Learning for Early Detection and Treatment Outcome Prediction 367
Eva K. Lee 

17.1 Introduction 367 

17.2 Background 369 

17.3 Machine Learning with Discrete Support Vector Machine Predictive Models 372 

17.3.1 Modeling of Reserved-Judgment Region for General Groups 373 

17.3.2 Discriminant Analysis via Mixed-Integer Programming 374 

17.3.3 Model Variations 376 

17.3.4 Theoretical Properties and Computational Strategies 379 

17.4 Applying Damip to Real-World Applications 380 

17.4.1 Validation of Model and Computational Effort 381 

17.4.2 Applications to Biological and Medical Problems 381 

17.4.3 Applying DAMIP to UCI Repository of Machine Learning Databases 389 

17.5 Summary and Conclusion 393 

Acknowledgment 394 

References 394 

Index 401

最近チェックした商品