The Volatility Smile (Wiley Finance)

個数:
電子版価格
¥8,039
  • 電子版あり

The Volatility Smile (Wiley Finance)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 512 p.
  • 言語 ENG
  • 商品コード 9781118959169
  • DDC分類 332.63228301

Full Description

The Volatility Smile

The Black-Scholes-Merton option model was the greatest innovation of 20th century finance, and remains the most widely applied theory in all of finance. Despite this success, the model is fundamentally at odds with the observed behavior of option markets: a graph of implied volatilities against strike will typically display a curve or skew, which practitioners refer to as the smile, and which the model cannot explain. Option valuation is not a solved problem, and the past forty years have witnessed an abundance of new models that try to reconcile theory with markets.

The Volatility Smile presents a unified treatment of the Black-Scholes-Merton model and the more advanced models that have replaced it. It is also a book about the principles of financial valuation and how to apply them. Celebrated author and quant Emanuel Derman and Michael B. Miller explain not just the mathematics but the ideas behind the models. By examining the foundations, the implementation, and the pros and cons of various models, and by carefully exploring their derivations and their assumptions, readers will learn not only how to handle the volatility smile but how to evaluate and build their own financial models.

Topics covered include:



The principles of valuation
Static and dynamic replication
The Black-Scholes-Merton model
Hedging strategies
Transaction costs
The behavior of the volatility smile
Implied distributions
Local volatility models
Stochastic volatility models
Jump-diffusion models

The first half of the book, Chapters 1 through 13, can serve as a standalone textbook for a course on option valuation and the Black-Scholes-Merton model, presenting the principles of financial modeling, several derivations of the model, and a detailed discussion of how it is used in practice. The second half focuses on the behavior of the volatility smile, and, in conjunction with the first half, can be used for as the basis for a more advanced course.

Contents

Preface xi

Acknowledgments xiii

About the Authors xv

CHAPTER 1 Overview 1

CHAPTER 2 The Principle of Replication 13

CHAPTER 3 Static and Dynamic Replication 37

CHAPTER 4 Variance Swaps: A Lesson in Replication 57

CHAPTER 5 The P&L of Hedged Option Strategies in a Black-Scholes-Merton World 85

CHAPTER 6 The Effect of Discrete Hedging on P&L 105

CHAPTER 7 The Effect of Transaction Costs on P&L 117

CHAPTER 8 The Smile: Stylized Facts and Their Interpretation 131

CHAPTER 9 No-Arbitrage Bounds on the Smile 153

CHAPTER 10 A Survey of Smile Models 163

CHAPTER 11 Implied Distributions and Static Replication 175

CHAPTER 12 Weak Static Replication 203

CHAPTER 13 The Binomial Model and Its Extensions 227

CHAPTER 14 Local Volatility Models 249

CHAPTER 15 Consequences of Local Volatility Models 265

CHAPTER 16 Local Volatility Models: Hedge Ratios and Exotic Option Values 289

CHAPTER 17 Some Final Remarks on Local Volatility Models 303

CHAPTER 18 Patterns of Volatility Change 309

CHAPTER 19 Introducing Stochastic Volatility Models 319

CHAPTER 20 Approximate Solutions to Some Stochastic Volatility Models 337

CHAPTER 21 Stochastic Volatility Models: The Smile for Zero Correlation 353

CHAPTER 22 Stochastic Volatility Models: The Smile with Mean Reversion and Correlation 369

CHAPTER 23 Jump-Diffusion Models of the Smile: Introduction 383

CHAPTER 24 The Full Jump-Diffusion Model 395

Epilogue 417

APPENDIX A Some Useful Derivatives of the Black-Scholes-Merton Model 419

APPENDIX B Backward Itoˆ Integrals 421

APPENDIX C Variance Swap Piecewise-Linear Replication 431

Answers to End-of-Chapter Problems 433

References 497

Index 501

最近チェックした商品