行列解析の基礎と応用(テキスト)<br>Fundamentals of Matrix Analysis with Applications

個数:

行列解析の基礎と応用(テキスト)
Fundamentals of Matrix Analysis with Applications

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 395 p.
  • 言語 ENG
  • 商品コード 9781118953655
  • DDC分類 512.9434

Full Description

An accessible and clear introduction to linear algebra with a focus on matrices and engineering applications

Providing comprehensive coverage of matrix theory from a geometric and physical perspective, Fundamentals of Matrix Analysis with Applications describes the functionality of matrices and their ability to quantify and analyze many practical applications. Written by a highly qualified author team, the book presents tools for matrix analysis and is illustrated with extensive examples and software implementations.

Beginning with a detailed exposition and review of the Gauss elimination method, the authors maintain readers' interest with refreshing discussions regarding the issues of operation counts, computer speed and precision, complex arithmetic formulations, parameterization of solutions, and the logical traps that dictate strict adherence to Gauss's instructions. The book heralds matrix formulation both as notational shorthand and as a quantifier of physical operations such as rotations, projections, reflections, and the Gauss reductions. Inverses and eigenvectors are visualized first in an operator context before being addressed computationally. Least squares theory is expounded in all its manifestations including optimization, orthogonality, computational accuracy, and even function theory. Fundamentals of Matrix Analysis with Applications also features:



Novel approaches employed to explicate the QR, singular value, Schur, and Jordan decompositions and their applications
Coverage of the role of the matrix exponential in the solution of linear systems of differential equations with constant coefficients
Chapter-by-chapter summaries, review problems, technical writing exercises, select solutions, and group projects to aid comprehension of the presented concepts

Fundamentals of Matrix Analysis with Applications is an excellent textbook for undergraduate courses in linear algebra and matrix theory for students majoring in mathematics, engineering, and science. The book is also an accessible go-to reference for readers seeking clarification of the fine points of kinematics, circuit theory, control theory, computational statistics, and numerical algorithms.

 

Contents

Preface ix

Part I Introduction: Three Examples 1

1 Systems of Linear Algebraic Equations 5

1.1 Linear Algebraic Equations 5

1.2 Matrix Representation of Linear Systems and the Gauss-Jordan Algorithm 17

1.3 The Complete Gauss Elimination Algorithm 27

1.4 Echelon Form and Rank 38

1.5 Computational Considerations 46

1.6 Summary 55

2 Matrix Algebra 58

2.1 Matrix Multiplication 58

2.2 Some Physical Applications of Matrix Operators 69

2.3 The Inverse and the Transpose 76

2.4 Determinants 86

2.5 Three Important Determinant Rules 100

2.6 Summary 111

Group Projects for Part I

A. LU Factorization 116

B. Two-Point Boundary Value Problem 118

C. Electrostatic Voltage 119

D. Kirchhoff's Laws 120

E. Global Positioning Systems 122

F. Fixed-Point Methods 123

Part II Introduction: The Structure of General Solutions to Linear Algebraic Equations 129

3 Vector Spaces 133

3.1 General Spaces Subspaces and Spans 133

3.2 Linear Dependence 142

3.3 Bases, Dimension, and Rank 151

3.4 Summary 164

4 Orthogonality 165

4.1 Orthogonal Vectors and the Gram-Schmidt Algorithm 165

4.2 Orthogonal Matrices 174

4.3 Least Squares 180

4.4 Function Spaces 190

4.5 Summary 197

Group Projects for Part II

A. Rotations and Reflections 201

B. Householder Reflectors 201

C. Infinite Dimensional Matrices 202

Part III Introduction: Reflect on This 205

5 Eigenvectors and Eigenvalues 209

5.1 Eigenvector Basics 209

5.2 Calculating Eigenvalues and Eigenvectors 217

5.3 Symmetric and Hermitian Matrices 225

5.4 Summary 232

6 Similarity 233

6.1 Similarity Transformations and Diagonalizability 233

6.2 Principle Axes and Normal Modes 244

6.3 Schur Decomposition and Its Implications 257

6.4 The Singular Value Decomposition 264

6.5 The Power Method and the QR Algorithm 282

6.6 Summary 290

7 Linear Systems of Differential Equations 293

7.1 First-Order Linear Systems 293

7.2 The Matrix Exponential Function 306

7.3 The Jordan Normal Form 316

7.4 Matrix Exponentiation via Generalized Eigenvectors 333

7.5 Summary 339

Group Projects for Part III

A. Positive Definite Matrices 342

B. Hessenberg Form 343

C. Discrete Fourier Transform 344

D. Construction of the SVD 346

E. Total Least Squares 348

F. Fibonacci Numbers 350

Answers to Odd Numbered Exercises 351

Index 393

最近チェックした商品