栄養補助食品と機能性食品のゲノミクス・プロテオミクス・メタボロミクス(第2版)<br>Genomics, Proteomics and Metabolomics in Nutraceuticals and Functional Foods (2ND)

個数:
電子版価格
¥37,383
  • 電子版あり
  • ポイントキャンペーン

栄養補助食品と機能性食品のゲノミクス・プロテオミクス・メタボロミクス(第2版)
Genomics, Proteomics and Metabolomics in Nutraceuticals and Functional Foods (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 653 p.
  • 言語 ENG
  • 商品コード 9781118930427
  • DDC分類 664

Full Description

Functional foods and nutraceuticals have received considerable interest in the past decade largely due to increasing consumer awareness of the health benefits associated with food. Diet in human health is no longer a matter of simple nutrition: consumers are more proactive and increasingly interested in the health benefits of functional foods and their role in the prevention of illness and chronic conditions. This, combined with an aging population that focuses not only on longevity but also quality of life, has created a market for functional foods and nutraceuticals.

A fully updated and revised second edition, Genomics, Proteomics and Metabolomics in Nutraceuticals and Functional Foods reflects the recent upsurge in "omics" technologies and features 48 chapters that cover topics including genomics, proteomics, metabolomics, epigenetics, peptidomics, nutrigenomics and human health, transcriptomics, nutriethics and nanotechnology. This cutting-edge volume, written by a panel of experts from around the globe reviews the latest developments in the field with an emphasis on the application of these novel technologies to functional foods and nutraceuticals.

Contents

Contributors xxiv

Preface xxxi

Part I Introduction 1

1 Novel Omics Technologies in Food Nutrition 3
Xuewu Zhang, Lijun You, Wei Wang, and Kaijun Xiao

1.1 Introduction 3

1.2 Transcriptomics in Nutritional Research 4

1.3 Proteomics in Nutritional Research 5

1.4 Metabolomics in Nutritional Research 7

1.5 Systems Biology in Nutritional Research 9

1.6 Conclusions 9

References 10

2 Seafood Authentication using Foodomics: Proteomics, Metabolomics, and Genomics 14
Karola Böhme, Jorge Barros-Velázquez, Pilar Calo-Mata, José M. Gallardo, and Ignacio Ortea

2.1 Introduction 14

2.2 Proteomic Approaches 15

2.3 Metabolomic Approaches 19

2.4 Genomic Approaches 20

2.5 Conclusions 25

References 26

3 A Foodomics Approach Reveals Hypocholesterolemic Activity of Red Microalgae 31
Irit Dvir, Aliza H. Stark, and Shoshana (Malis) Arad

3.1 Introduction 31

3.2 Marine Functional Foods and Supplements 32

3.2.1 Algae as a Functional Food 32

3.2.2 The Nutritional Value of Algae 32

3.3 Microalgae 33

3.3.1 Red Microalgae 34

3.3.2 Sulfated Polysaccharides from Red Microalgae 34

3.3.3 Red Microalgae as a Hypocholesterolemic Agent 35

3.4 Summary 37

References 37

Part II Genomics 41

4 Gene-Diet Interaction and Weight Management 43
Lu Qi

4.1 Introduction 43

4.2 Diet and Lifestyle Modifications in Weight Management 44

4.3 The Role of Genetic Factors in Determining Body Weight and Weight Loss 44

4.4 Gene-Diet Interactions on Body Weight and Risk of Obesity 46

4.5 Gene-Diet Interactions on Weight Loss in Randomized Clinical Trials 47

4.6 Gene-Diet Interactions on Weight Maintenance 48

4.7 Personalized Weight Management through Diet and Lifestyle Modifications 49

4.8 Summary and Concluding Remarks 50

Acknowledgments 50

References 50

5 NutrimiRomics: The Promise of a New Discipline in Nutrigenomics 53
Amitava Das and Chandan K. Sen

5.1 Introduction 53

5.2 miRomics: A New Cornerstone 56

5.3 Nutrigenomics and miR 57

References 58

6 Genomics as a Tool to Characterize Anti-inflammatory Nutraceuticals 61
Amitava Das, Scott Chaffee, and Sashwati Roy

6.1 Chronic Inflammation in Disease 61

6.1.1 Vascular Disorders 61

6.1.2 Respiratory Disorders 62

6.1.3 Gastrointestinal Tract 62

6.1.4 Neurodegenerative Diseases 63

6.1.5 Cancer 63

6.1.6 Rheumatic Diseases 63

6.2 Nutraceuticals in the Management of Chronic Inflammation 64

6.3 GeneChip TM as a Tool to Characterize the Anti-Inflammatory Properties of Nutraceuticals 65

References 68

7 Nutrigenomics, Inflammaging, and Osteoarthritis: A Review 71
Ali Mobasheri, Richard Barrett-Jolley, Caroline A. Staunton, Chris Ford, and Yves Henrotin

7.1 Introduction 71

7.2 Osteoarthritis (OA) 72

7.3 Antioxidants and the Inflammatory Microenvironment 73

7.4 Inflammaging 75

7.5 Nutrigenomics 76

7.6 Muscle Inflammation in OA 77

7.7 Conclusions 80

Acknowledgments, Competing Interests, and Disclosures 80

References 80

8 Genetic Basis of Anti-Inflammatory Properties of Boswellia Extracts 85
Golakoti Trimurtulu, Chandan K. Sen, Alluri V. Krishnaraju, Kiran Bhupathiraju, and Krishanu Sengupta

8.1 Introduction 85

8.2 Boswellia serrata 86

8.3 Mechanism of Action 87

8.4 Development of 5-LOXIN ® (BE-30) 87

8.4.1 Genetic Basis for Efficacy of 5-LOXIN ® (BE-30) 88

8.5 Gene Chip Probe Array Analysis 88

8.6 Proteomics 89

8.7 Molecular Basis of Anti-Inflammatory Properties of 5-LOXIN ® 95

8.8 In vivo Studies 96

8.9 Safety of 5-LOXIN ® 96

8.10 Clinical Efficacy of 5-LOXIN ® in the Management of Osteoarthritis 97

8.11 An Advanced 5-LOXIN ® : Aflapin ® 99

8.12 Conclusion 100

References 100

9 Cancer Chemopreventive Phytochemicals Targeting NF-κB and Nrf2 Signaling Pathways 102
Hye-Kyung Na and Young-Joon Surh

9.1 Introduction 102

9.2 Molecular-Based Cancer Chemoprevention 104

9.3 Nuclear Factor-Kappa B (NF-κB) 105

9.3.1 Curcumin 106

9.3.2 [6]-Gingerol 107

9.3.3 Capsaicin 107

9.3.4 Resveratrol 107

9.3.5 Quercetin 108

9.3.6 Sulforaphane 108

9.3.7 Genistein 108

9.4 Nrf2 108

9.4.1 Sulforaphane 109

9.4.2 Curcuminoids 111

9.4.3 Egcg 111

9.4.4 Allyl Sulfides 111

9.4.5 Resveratrol 112

9.4.6 Pungent Vanilloids 112

9.4.7 Lycopene 112

9.4.8 Coffee-Derived Diterpenes 113

9.4.9 Carnosol 113

9.4.10 Xanthohumol 113

9.4.11 Zerumbone 113

9.4.12 Chalcones 114

9.5 Interplay/Crosstalk between Nrf2 and NF-κB Signaling Pathways 114

9.6 Conclusion 115

Acknowledgment 116

References 116

10 The Beneficial Health Effects of Fucoxanthin 122
Kazuo Miyashita and Masashi Hosokawa

10.1 Introduction 122

10.2 The Beneficial Health Effects of Carotenoids as Antioxidants 124

10.3 Anticancer Activity of Fucoxanthin 124

10.4 Anti-Obesity Effects of Fucoxanthin 126

10.5 Anti-Diabetic Effects of Fucoxanthin 127

10.6 Conclusion 130

References 131

11 Nutrition, Genomics, and Human Health: A Complex Mechanism for Wellness 135
Okezie I. Aruoma

11.1 Introduction 135

11.2 Nutrition Sciences and Clinical Applications in Nutritional Genomics 136

References 139

12 Application of Genomics and Bioinformatics Analysis in Exploratory Study of Functional Foods 140
Kohsuke Hayamizu and Aiko Manji

12.1 Introduction 140

12.2 Analysis Tools 141

12.2.1 GeneSpring GX 141

12.2.2 Bioconductor 141

12.2.3 Others 141

12.3 Interpretation Tools 142

12.3.1 Go Analysis Tools 142

12.3.2 Pathway Analysis Tools 142

12.3.3 Association Network Analysis Tools 143

12.4 Application Example of Kale (Brassica oleracea L. Var Acephala DC) 143

12.4.1 Animal Study and DNA Microarray Analysis 144

12.4.2 Data Analysis 144

12.4.3 Result 146

12.5 Conclusion 148

References 149

13 Omics Analysis and Databases for Plant Science 150
Masaaki Kobayashi, Hajime Ohyanagi, and Kentaro Yano

13.1 Introduction 150

13.2 NGS Technologies and Data Processing 151

13.3 De novo Plant Genome Assembly by NGS 151

13.3.1 Basics of Plant Genome Assembly 151

13.3.2 Plant Genome Assembly by NGS Short Reads 152

13.3.3 Hybrid-Type Assembly 152

13.4 Plant Genome Resequencing by NGS 153

13.4.1 Conventional Resequencing Technologies 153

13.4.2 GBS/RAD-Seq 154

13.5 Plant Transcriptome Analysis by NGS 154

13.5.1 Transcriptome Analysis with Reference Genome Sequences 154

13.5.2 Reference-Free Transcriptome Analysis 154

13.6 Plant Genome and Annotation Databases 154

13.6.1 TAIR (Arabidopsis) 154

13.6.2 RAP-DB (Rice) 155

13.6.3 Other Plants 155

13.7 Plant Omics Databases 155

13.7.1 Transcriptome Databases 155

13.7.2 Gene Expression Network Databases 156

13.7.3 Metabolic Pathway Databases 156

13.7.4 Other Databases for Omics Integration 156

13.8 Conclusion 156

References 157

14 Synergistic Plant Genomics and Molecular Breeding Approaches for Ensuring Food Security 160
Shouvik Das and Swarup K. Parida

14.1 Introduction 160

14.2 Plant Genomics, Transcriptomics, Proteomics, and Metabolomics Resources 161

14.3 Molecular Markers in Plant Genome Analysis 163

14.3.1 Microsatellite Markers 164

14.3.2 Single Nucleotide Polymorphism (SNP) Markers 166

14.4 Identification of Functionally Relevant Molecular Tags Governing Agronomic Traits 167

14.4.1 Plant Genetic Resources Rich in Trait Diversity 167

14.4.2 High-Throughput Phenotyping 168

14.4.3 High-Throughput Marker Genotyping 168

14.4.4 Identification and Mapping of QTLs/Genes 168

14.4.5 Trait Association Mapping 170

14.5 Genomics-Assisted Crop Improvement 170

References 175

15 Combinatorial Approaches Utilizing Nutraceuticals in Cancer Chemoprevention and Therapy: A Complementary Shift with Promising Acuity 185
Madhulika Singh and Yogeshwer Shukla

15.1 Introduction 185

15.2 Nutraceuticals 187

15.3 Nutraceuticals and Key Events in Cancer Development 189

15.3.1 Inflammation 189

15.3.2 Oxidative Stress 189

15.3.3 Antiproliferation 190

15.3.4 Cell-Cycle Arrest 190

15.3.5 Apoptosis 190

15.3.6 Transforming Growth Factor-β (TGF-β)/Smad Signaling Pathway 191

15.3.7 β-Catenin 191

15.4 Nutraceuticals in Combinatorial Therapy of Human Cancer: A Pledge of the Future 191

15.4.1 Nutraceuticals in Cruciferous Vegetables: Potential for Combination Therapy 191

15.4.2 Indole-3-Carbinol (I3C) and Combinations 192

15.4.3 Phenethylisothiocyanate (PEITC) and Combinations 192

15.4.4 Sulforaphane (SFN) and Combinations 193

15.4.5 Synergism among Cruciferous Compounds 194

15.4.6 Combinations of Cruciferous Compounds with Conventional Cancer Chemotherapeutics 194

15.5 Curcumin: Potential for Combination Therapy 195

15.5.1 Curcumin with Xanthorrhizol 196

15.5.2 Curcumin with Docosahexaenoic Acid (DHA, Polyunsaturated Fatty Acids Present in Fish Oil) 196

15.5.3 Curcumin and Genistein 196

15.5.4 Curcumin and Resveratrol 197

15.5.5 Curcumin and EGCG 197

15.5.6 Curcumin and Citrus Limonoids 197

15.5.7 Curcumin with Apigenin 197

15.5.8 Curcumin and Triptolide 198

15.5.9 Combinations of Curcumin with Conventional Cancer Chemotherapeutics 198

15.6 Resveratrol: Potential for Combination Therapy 199

15.6.1 Resveratrol and Genistein 199

15.6.2 Resveratrol and Piperine 200

15.6.3 Resveratrol and Black Tea Polyphenols 200

15.6.4 Resveratrol and Melatonin 200

15.6.5 Synergism among Resveratrol and Other Grapes' Polyphenols 200

15.6.6 Resveratrol in Combination with Anticancer Drugs 201

15.7 Lycopene (a Carotenoid): Potential for Combinations Therapy 202

15.7.1 Lycopene and Genistein 202

15.7.2 Lycopene and Sc-allyl Cysteine 202

15.7.3 Lycopene and 1,25-Dihydroxyvitamin D3 202

15.7.4 Lycopene with Selenium 203

15.7.5 Lycopene and FruHis (Ketosamine) 203

15.7.6 Combination of Lycopene with Cancer Chemotherapeutic Drugs 203

15.8 Soy Nutraceuticals: Potential for Combination Therapy 203

15.8.1 Genistein and Daidzein 203

15.8.2 Genistein and 3,3'-Diindolylmethane 203

15.8.3 Genistein and Capsaicin 204

15.8.4 Combination of Genistein with Conventional Cancer Chemotherapeutics 204

15.9 Tea Polyphenols Potential for Combinatorial Therapy 204

15.9.1 Green Tea and Quercetin 205

15.9.2 EGCG and Soy Phytochemical 205

15.9.3 EGCG and Thymoquinone 205

15.9.4 EGCG and Trichostatin A 205

15.9.5 EGCG and Luteolin 205

15.9.6 EGCG and Pterostilbene (a Stilbenoid Derived from Blueberries) 205

15.9.7 EGCG and Panaxadiol 206

15.9.8 Polyphenon E 206

15.9.9 EGCG with Conventional Cancer Chemotherapy 206

15.10 D-Limonene: Potential for Combination Therapy 207

15.10.1 D-Limonene and Chemotherapeutic Drugs 207

15.11 Miscellaneous: Novel Nutraceuticals Formulation 207

15.11.1 Coltect: A Dietary Supplement 207

15.11.2 BreastDefend: A Natural Dietary Supplement 208

15.11.3 ProstaCaid: A Dietary Supplement 208

15.12 Conclusion 208

References 208

16 Nutrigenomic Approaches to Understanding the Transcriptional and Metabolic Responses of Phytochemicals to Diet-Induced Obesity and its Complications 218
Myung-Sook Choi and Eun-Young Kwon

16.1 Introduction 218

16.2 Nutrigenomics 219

16.2.1 Tools for Bioinformatics and Systems Biology 219

16.3 Obesity and Cardiometabolic Syndrome 222

16.3.1 Obesity 222

16.3.2 Inflammation and Insulin Resistance in Obesity 223

16.3.3 Obesity and Cardiometabolic Syndrome: A Possible Role for Nutrigenomics 224

16.4 Anti-Obesity Action of Luteolin 225

16.5 Conclusion 226

Acknowledgments 226

References 226

17 Going Beyond the Current Native Nutritional Food Through the Integration of the Omic Data in the Post-Genomic Era: A Study in (Resistant) Starch Systems Biology 230
Treenut Saithong and Saowalak Kalapanulak

17.1 Introduction 230

17.2 Starch and its Yield Improvement in Plants 231

17.3 An Extension of the (Resistant) Starch Yield Improvement Research on the Systems Biology Regime: Integration of the Omic Data from the Post-Genomic Technology 233

References 239

Part III Proteomics 243

18 Proteomics and Nutrition Research: An Overview 245
Arun K. Tewari, Sudhasri Mohanty, and Sashwati Roy

18.1 Introduction 245

18.2 Proteomics 245

18.2.1 Proteomics Tools and Technologies 246

18.3 Nutrition and Proteins 246

18.4 Nutritional Biomarkers 248

18.5 Nutritional Bioactives 248

18.5.1 Wheat Proteins 248

18.5.2 Vitamins 248

18.5.3 Glucose 249

18.5.4 Wine and Soy Nutrients 249

18.6 Diet-Based Proteomics Application to Animal Products (Livestock Applications) 249

18.7 Proteomics and Food Safety 249

18.8 Conclusion 249

18.9 Significance 250

Conflict of Interests 250

References 250

19 Proteomics Analysis for the Functionality of Toona sinensis 253
Sue-Joan Chang and Chun-Yung Huang

19.1 Introduction 253

19.2 Toona sinensis 253

19.2.1 Functions of Toona sinensis Leaf Extracts (TSLs) 254

19.2.2 Preparation of TSLs 254

19.3 TSLs Regulate Functions of Testes/Spermatozoa 254

19.3.1 TSL-2 Exhibits Pro-oxidants but Protects Germ Cells from Apoptosis 254

19.3.2 TSL-2P Exhibits Prooxidant Properties and Impairs Sperm Maturation 255

19.3.3 TSL-6 Exhibits Antioxidant Properties and Enhances Sperm Functions 255

19.4 TSLs Regulate Liver Metabolism 257

19.4.1 TSL-CE Decreases Gluconeogenesis 257

19.4.2 TSL-CE Enhances Lipolysis 258

19.4.3 TSL-CE Decreases Glutamate Metabolism 258

19.4.4 TSL-CE Alleviates Oxidative Stress 259

19.4.5 TSL-CE Increases Protein Kinase C -λ 260

19.4.6 TSL-CE Activates the PPARα/γ Pathway 260

19.4.7 TSL-CE Inhibits the Polyol Pathway 260

19.5 TSL as a Novel Antioxidant 261

19.6 Possible Active Compounds in TSL Extracts 261

19.7 Conclusion 261

References 262

20 Proteomic Approaches to Identify Novel Therapeutics and Nutraceuticals from Filamentous Fungi: Prospects and Challenges 265
Samudra Prosad Banik, Suman Khowala, Chiranjib Pal, and Soumya Mukherjee

20.1 Introduction 265

20.2 Mushroom Derived Immunomodulators and their Target Cells in the Immune System 266

20.2.1 Macrophages 266

20.2.2 Dendritic Cells 266

20.2.3 NK Cells 269

20.3 Mushroom Derived Metabolites in Treating Cancer 271

20.4 Mushroom Derived Metabolites in Infectious Diseases 271

20.5 Fungal Enzymes as Therapeutics and Dietary Supplements 274

20.6 Identification and Characterization of Mushroom Derived Bioactive Therapeutics 275

20.6.1 Proteomic Methodologies for Characterization of Fungal Complexes 276

20.7 Challenges in Intracellular Proteome Preparation 279

20.8 Challenges in Extracellular Proteome Preparation 279

20.9 New Generation MS Technologies to Track the Dynamic Proteome 280

20.10 Glycoproteomics: A New Arsenal in the Proteomic Toolbox 280

20.11 Glycoproteomics of Filamentous Fungi 281

20.12 High-Throughput Approaches to Decipher Fungal Glycan Structures 282

20.13 Challenges in MS Studies of Glycans/Glycopeptides 284

20.14 Optimized MS Instrumentation for Glycan Analysis 284

20.15 Tandem Mass Spectrometry 285

20.16 Bioinformatics for Glycoproteomics: Hitting Databases with MS Peaks 285

20.17 Predicting Glycan Structures with Computational Tools 286

20.18 Concluding Remarks: The Road Ahead 287

Acknowledgment 287

References 287

21 Proteomics and Metaproteomics for Studying Probiotic Activity 296
Rosa Anna Siciliano and Maria Fiorella Mazzeo

21.1 Introduction 296

21.2 Molecular Mechanisms of Probiotic Action as Studied by Proteomics 297

21.2.1 Adaptation Mechanisms to GIT Environment 297

21.2.2 Adhesion Mechanisms to the Host Mucosa 298

21.2.3 Molecular Mechanisms of Probiotic Immunomodulatory Effects 299

21.3 Probiotics and Prebiotics 299

21.4 Investigation on Human Microbiota Dynamics by Proteomics 300

21.5 Concluding Remarks and Future Directions 301

References 301

22 Proteomics Approach to Assess the Potency of Dietary Grape Seed Proanthocyanidins and Dimeric Procyanidin B2 304
Hai-qing Gao, Bao-ying Li, Mei Cheng, Xiao-li Li, Fei Yu, and Zhen Zhang

22.1 Chemoprotective Properties of GSPs 305

22.1.1 Components and Molecules 305

22.1.2 Antioxidant Effects 305

22.1.3 Anti-Nonenzymatic Glycation and Anti-Inflammation Effects 305

22.1.4 Protective Effects on the Cardiovascular System 306

22.1.5 Protective Effects on Diabetes and its Complications 307

22.1.6 Anti-Aging Effects 308

22.1.7 Anti-Oncogenesis Effects 308

22.1.8 Effect on Wound Healing 309

22.1.9 Anti-Osteoporosis 309

22.2 Proteomic Platform 309

22.2.1 Based on Two-Dimensional Gel Electrophoresis (2-DE) Proteomics 309

22.2.2 "Gel-Free" Proteomics 310

22.2.3 Protein Chips 311

22.3 Proteomics Analysis of the Actions of GSPs 311

22.3.1 Proteomics Analysis of the Actions of GSP in the Brain of Normal Rats 311

22.3.2 Proteomics Analysis of the Actions of GSP in Rats with Diabetic Nephropathy 312

22.3.3 Proteomics Analysis of the Actions of GSPB 2

in the Aorta of db/db Mice 314

22.3.4 Proteomics Analysis of the Actions of GSPB2 in the Kidneys of db/db Mice 315

22.4 Functional Confirmation of Proteins 317

22.5 Future Perspectives 317

Acknowledgments 317

References 318

23 Genomic and Proteomic Approaches to Lung Transplantation: Identifying Relevant Biomarkers to Improve Surgical Outcome 321
John Noel, Ronald Carnemola, and Shampa Chatterjee

23.1 Introduction 321

23.2 Lung Transplantation 322

23.2.1 A Case of Ischemia-Reperfusion (I/R) 322

23.2.2 The I/R Signaling Cascade 322

23.3 Challenges of Lung Transplantation 323

23.3.1 Oxidative Damage and Bronchiolitis Obliterans Syndrome 323

23.3.2 Oxidative Damage and Inflammation 323

23.4 Inflammatory Biomarkers with Lung Rejection: Markers of Inflammation Signaling such as CAMs, Chemokines, and Cytokines and their Status with Transplants 324

23.4.1 Proinflammatory Cytokines and Chemokines 324

23.4.2 Cellular Adhesion Molecules 324

23.5 Microarray Technology to Identify Transplant Rejection Biomarkers 324

23.6 Challenges and Future Directions 325

References 325

24 Proteomics in Understanding the Molecular Basis of Phytochemicals for Health 328
Jung Yeon Kwon, Sanguine Byun, and Ki Won Lee

24.1 Introduction 328

24.2 Proteomics in Phytochemical Research in Cancer Prevention 329

24.2.1 Genistein 329

24.2.2 Curcumin 330

24.2.3 Sulforaphane and β-Phenylethyl Isothiocyanate 330

24.2.4 Apigenin 7-Glucoside 331

24.2.5 Quercetin 331

24.3 Perspectives 331

24.4 Proteomics in Phytochemical Research for Metabolic Diseases 333

24.5 Proteomics for Neuroprotective Phytochemicals 333

24.6 Proteomics for Phytochemicals with Other Functions for Health Benefits 334

24.7 Conclusions 334

References 335

25 Genomics/Proteomics of NEXT-II ® , a Novel Water-Soluble, Undenatured Type II Collagen in Joint Health Care 338
Orie Yoshinari, Hiroyoshi Moriyama, Manashi Bagchi, and Debasis Bagchi

25.1 Introduction 338

25.2 Mechanism of RA 339

25.3 About NEXT-II ® 340

25.3.1 Preparation of NEXT-II ® 341

25.3.2 Safety of NEXT-II ® 341

25.3.3 Efficacy of NEXT-II ® in Collagen-Induced Arthritic Mice 342

25.4 Hypothesized Mechanism of NEXT-II ® 342

25.5 Future Perspectives 343

25.6 Conclusion 343

References 343

Part IV Metabolomics 347

26 Harnessing Metabolic Diversity for Nutraceutical Plant Breeding 349
Ashish Saxena and Vicki L. Schlegel

26.1 What is Metabolomics? 349

26.2 Nutraceuticals 350

26.3 Importance of Secondary Metabolites 350

26.4 Complementing Plant Breeding with "Omics" 351

26.5 Nutraceutical Breeding 352

26.6 Crop Quality 353

26.7 Metabolomics and Plant Stresses 353

26.8 Food Safety 354

26.9 Future 354

References 354

27 Metabolomics and Fetal-Neonatal Nutrition: An Overview 357
Angelica Dessì, Flaminia Cesare Marincola, and Vassilios Fanos

27.1 Introduction 357

27.2 IUGR and LGA: Fetal Programming 358

27.3 Metabolomics in Nutritional Research 358

27.4 Nutrimetabolomics in Animal Models 360

27.5 Nutrimetabolomics in Human Models 361

27.6 Conclusions 362

References 363

28 Metabolomics, Bioactives, and Cancer 365
Shannon R. Sweeney, John DiGiovanni, and Stefano Tiziani

28.1 Introduction 365

28.2 Nuclear Magnetic Resonance Spectroscopy 366

28.3 Mass Spectrometry 367

28.4 Application of Scientific Computing and Data Analysis 368

28.5 Metabolomics, Bioactive Food Components, and Cancer 369

28.5.1 Resveratrol 370

28.5.2 Epigallocatechin Gallate 370

28.5.3 Curcumin 372

28.5.4 Ursolic Acid 372

28.5.5 Omega-3 Fatty Acids 373

28.6 Future Perspectives 373

References 374

29 NMR-Based Metabolomics of Foods 379
Takuya Miyakawa, Tingfu Liang, and Masaru Tanokura

29.1 Introduction 379

29.2 Principal Aspects of NMR in Food Analyses 380

29.3 NMR Techniques Applied to Food Metabolomics 380

29.4 Monitoring of Metabolic Changes in Food Processing Using Quantitative NMR 381

29.5 NMR Profiling Based on Multivariate Analyses 382

29.5.1 Food Quality and Safety 383

29.5.2 Sensory Assessment for Food Development 384

29.5.3 Food Functionality and Identification of Bioactive Metabolites 385

29.6 Conclusion 386

Acknowledgments 386

References 386

30 Cancer Chemopreventive Effect of Curcumin through Suppressing Metabolic Crosstalk between Components in the Tumor Microenvironment 388
Dong Hoon Suh and Yong-Sang Song

30.1 Introduction 388

30.2 Cancer Metabolism 389

30.2.1 The Warburg and Reverse Warburg Effect 389

30.2.2 Paradigm Shift from Cancer Cells to Cancer Microenvironment 389

30.2.3 Cancer-Associated Cells in the Tumor Microenvironment 390

30.3 Metabolic Onco-Targets of Curcumin in the Tumor Microenvironment 391

30.3.1 Xenohormetic Inhibition of NF-κB 391

30.4 Clinical Trials of Curcumin as Metabolic Modulators in Cancer 393

30.5 Conclusions and Future Perspectives 393

Acknowledgments 394

References 394

31 Metabolomics of Green Tea 397
Yoshinori Fujimura and Hirofumi Tachibana

31.1 Introduction 397

31.2 Metabolic Profiling 398

31.3 Tea Chemical Composition 401

31.4 Metabolic Responses to Tea Consumption 402

31.5 Biotransformation of Dietary Tea Components 403

31.6 Conclusion 404

Acknowledgments 404

References 405

Part V Epigenetics 407

32 The Potential Epigenetic Modulation of Diabetes Influenced by Nutritional Exposures In Utero 409
Jie Yan and Huixia Yang

32.1 Introduction 409

32.2 Insulin Resistance 409

32.3 Skeletal Muscle 410

32.4 Type 2 Diabetes 410

32.5 Influence of High-Fat Diet 410

32.6 Obesity 410

32.7 Intrauterine Growth Restriction (IUGR) 411

32.8 Environmental Factors and Epigenetic Modifications 411

32.9 Mitochondria and Energy Homeostasis 413

32.10 Diabetes Progression 413

32.11 Conclusion 414

References 414

33 The Time has Come (and the Tools are Available) for Nutriepigenomics Studies 418
Pearlly S. Yan

33.1 Introduction: Great Strides in Deciphering Methylomes 418

33.2 Recent Findings in Methylome Research and their Implications for Future Nutriepigenomic Research 419

33.2.1 Cohort Size and Data Reproducibility 419

33.2.2 Proxy/Surrogate Tissues 419

33.2.3 Confounders of Methylome Profiles 419

33.3 Strategies for Identifying and Optimizing a Small Number of Promising Methylation Markers 419

33.3.1 Methylome Profiling Protocols 419

33.3.2 Integrating Transcriptional Information 420

33.3.3 Genetic-Associated Epigenetic Changes 420

33.3.4 Other Approaches to Identify Functional Markers 420

33.4 Validation of Methylation Markers Performance in Large Cohorts using Highly Targeted Assays 421

33.4.1 Validation Using Methylation-Based Assays 421

33.4.2 Validation Using Gene Expression-Based Sequencing Panels as Readouts for Functional Methylation Markers 421

33.5 Summaries 422

References 422

34 Natural Phytochemicals as Epigenetic Modulators 424
Gauri Deb and Sanjay Gupta

34.1 Introduction 424

34.2 Epigenetic Mechanisms in Mammals 425

34.2.1 DNA Methylation 425

34.2.2 Histone Modifications 426

34.2.3 Non-Coding RNAs 426

34.3 Natural Phytochemicals and Epigenetic Mechanisms 427

34.3.1 Apigenin 427

34.3.2 Curcumin 428

34.3.3 (-)-Epigallocatechin-3-Gallate (EGCG) 428

34.3.4 Genistein and Soy Isoflavones 429

34.3.5 Indole-3-Carbinol and Diindolylmethane 430

34.3.6 Lycopene 430

34.3.7 Organosulfur Compounds 431

34.3.8 Phenethyl Isothiocyanate (PEITC) 431

34.3.9 Quercetin 431

34.3.10 Resveratrol 432

34.3.11 Sulforaphane 432

34.4 Conclusion and Future Perspectives 433

Acknowledgments 433

References 433

Part VI Peptidomics 441

35 Detection and Identification of Food-Derived Peptides in Human Blood: Food-Derived Short Chain Peptidomes in Human Blood 443
Kenji Sato and Daisuke Urado

35.1 Introduction 443

35.2 Detection of Apparent Bioactive Peptides in Human Blood 444

35.3 Identification of Food-Derived Peptides in Human Blood 444

35.3.1 Identification of Food-Derived Peptides as Intact Forms 444

35.3.2 Isolation of Phenyl Thiocarbamyl Peptide for Sequence Analysis Based on Edman Degradation 446

35.3.3 MS/MS Analyses of Derivatized Peptides 448

35.4 Future Prospects 448

References 451

Part VII Nutrigenomics and Human Health 453

36 Use of Omics Approaches for Developing Immune-Modulatory and Anti-Inflammatory Phytomedicines 455
Shu-Yi Yin, Pradeep M. S., and Ning-Sun Yang

36.1 Introduction 455

36.1.1 Needs and Importance of Systems Biology and Bioinformatics 456

36.1.2 Omics Technologies 456

36.1.3 Phytomics 457

36.2 Transcriptomics Study in Medicinal Plant Research 458

36.2.1 Application of DNA Microarrays in Toxicogenomics, Pharmacogenomics, and Functional Genomics Studies of Bioactivity from Medicinal Plants 458

36.2.2 Immuno-Modulatory Effects of Different Phyto-Compounds/Candidate Phytomedicines 459

36.2.3 Use of cDNA Microarray/Expression Sequence Tags (ESTs) for Evaluating Bioactivities of Medicinal Plants 461

36.2.4 Immuno-Modulatory Effects of Traditional Herbal Medicines Revealed by microRNA Analysis 461

36.3 Proteomics Studies on Research into Medicinal Plants 462

36.3.1 Use and Advancement of Analytical and Instrumentation Systems: Two-Dimensional Gel Electrophoresis (2-DE), Electrospray Ionization, Matrix-Assisted Laser Desorption/Ionization and Surface-Enhanced Laser Desorption 462

36.3.2 Application of Proteomics for Research into Traditional Herbal Medicine 462

36.4 Metabolomics Study on the Research of Medicinal Plants 463

36.4.1 Use of GC-MS, LC-MS, FT-IR, and NMR Technologies 463

36.4.2 Metabolomics Research in Medicinal Chemistry Studies 465

36.4.3 Metabolomics Approach Applied to Research into Immunomodulatory Effects of Phytomedicine 465

36.5 Lipidomics Study on the Research of Medicinal Plants 466

36.6 Comparative and Bioinformatics Tools for Omics Studies 466

36.6.1 Ingenuity 466

36.6.2 Metacore™ 466

36.6.3 Transpath 468

36.6.4 Kegg 468

36.7 Challenges and Perspectives 469

References 471

37 The Application of Algae for Cosmeceuticals in the Omics Age 476
Nyuk Ling Ma, Su Shiung Lam, and Rahman Zaidah

37.1 Introduction 476

37.2 Metabolomics 477

37.3 Genomics 477

37.4 Proteomics 481

37.5 Conclusion 483

References 483

38 Gut Microbiome and Functional Foods: Health Benefits and Safety Challenges 489
Abhai Kumar, Smita Singh, and Anil Kumar Chauhan

38.1 Introduction 489

38.2 Microbiome Symbiosis 490

38.2.1 Diarrhea (Infectious and Antibiotic Associated) 491

38.2.2 Lactose Intolerance 491

38.2.3 Inflammatory Intestinal Diseases 492

38.2.4 Immune Modulation 492

38.3 Functional Food Intervention of Gut Microbiota 492

38.4 Types of Functional Foods and Their Effects 493

38.4.1 Probiotics and Prebiotics 493

38.4.2 Proteins and Peptides 495

38.4.3 Carbohydrates and Fibers 496

38.4.4 Lipids and Fatty Acids 497

38.4.5 Flavanoids and Lycopene 497

38.4.6 Vitamins 497

38.5 Regulations and Safety of Functional Food 497

38.6 Safety Challenges of Functional Food 499

38.7 Functional Foods and Nutrigenomics 499

38.8 Conclusions 500

Acknowledgment 500

Conflict of Interest 500

References 500

39 An Overview on Germinated Brown Rice and its Nutrigenomic Implications 504
Mustapha Umar Imam and Maznah Ismail

39.1 Diet and Health: The Role of Staple Foods and Nutrigenomic Implications 504

39.2 Health Implications of White Rice and Brown Rice Consumption 506

39.3 Germinated Brown Rice: Bioactives, Functional Effects, and Mechanistic Insights 506

39.3.1 Nutrigenomic Effects of Germinated Brown Rice on Obesity and Cholesterol Metabolism 509

39.3.2 Nutrigenomic Effects of Germinated Brown Rice on Oxidative Stress 511

39.3.3 Nutrigenomic Effects of Germinated Brown Rice on Glycemic Control 511

39.3.4 Nutrigenomic Effects of Germinated Brown Rice on Menopause-Related Problems 512

39.4 Conclusions 513

39.5 Future Considerations 513

Acknowledgments 513

Conflict of Interest 513

References 513

40 Novel Chromium (III) Supplements and Nutrigenomics Exploration: A Review 518
Sreejayan Nair, Anand Swaroop, and Debasis Bagchi

40.1 Introduction 518

40.2 Trivalent Chromium, Insulin Regulation, and Signaling 519

40.3 Regulatory Pathways 519

40.4 MicroRNAs 522

40.5 Summary and Conclusions 522

References 522

Part VIII Transcriptomics 525

41 Transcriptomics of Plants Interacting with Pathogens and Beneficial Microbes 527
Hooman Mirzaee, Louise Shuey, and Peer M. Schenk

41.1 Introduction 527

41.2 Plant Defense Responses against Pathogens 528

41.3 Transcriptomics during Plant-Pathogen Interactions 529

41.4 Plant Responses during Interactions with Beneficial Microbes 530

41.5 Transcriptomics during Beneficial Plant-Microbe Interactions 531

41.6 Knowledge on Modulation of Host Immunity by Pathogens and Beneficial Microbes May Lead to New Resistance Strategies 532

References 532

42 Transcriptomic and Metabolomic Profiling of Chicken Adipose Tissue: An Overview 537
Brynn H. Voy, Stephen Dearth, and Shawn R. Campagna

42.1 Introduction 537

42.2 Chicken as a Model Organism 537

42.3 Chicken Genome and Genetic Diversity 538

42.4 Chicken as a Model for Studies of Adipose Biology and Obesity 538

42.5 Natural and Selected Models of Differential Fatness 538

42.5.1 Broilers 538

42.5.2 Selected Lines 539

42.6 Transcriptomics and Metabolomics as Tools for the Studies of Adipose Biology in Chicken 539

42.7 Insight into Control of Adipose Tissue Growth and Metabolism in Chickens from Transcriptomics and Metabolomics 541

42.8 Conclusions and Future Directions 543

References 543

43 Nutritional Transcriptomics: An Overview 545
M. R. Noori-Daloii and A. Nejatizadeh

43.1 Introduction 545

43.2 Molecular Nutrition 546

43.3 From Nutrients to Genes Expression Profiling 547

43.4 Biological Actions of Nutrients 548

43.5 Nutritional Transcriptomics 548

43.6 Transcriptomic Technologies 549

43.7 Transcriptomics and Development of New Nutritional Biomarkers 552

43.8 The Micronutrient Genomics Project 553

43.9 Transcriptomics in Nutrition Research 553

43.10 Perspectives 554

References 555

44 Dissecting Transcriptomes of Cyanobacteria for Novel Metabolite Production 557
Sucheta Tripathy, Deeksha Singh, Mathumalar C., and Abhishek Das

44.1 Introduction 557

44.2 Phylogenetic Relationships in Cyanobacteria 558

44.3 Genomic Studies of Cyanobacteria 560

44.4 Plasmids in Cyanobacteria 562

44.5 Dissecting Transcriptomes of Cyanobacteria 563

44.5.1 Biofuel Production 563

44.5.2 Novel Metabolite Producing Genes in Cyanobacteria 571

44.6 Conclusion 571

Acknowledgment 571

References 571

45 Inflammation, Nutrition, and Transcriptomics 573
Gareth Marlow and Lynnette R. Ferguson

45.1 Introduction 573

45.2 Inflammation 573

45.3 Nutrition 575

45.3.1 Mediterranean Diet 575

45.4 Nutrigenomics 575

45.5 Dietary Factors and Inflammation 576

45.6 Transcriptomics 577

45.6.1 RNA-seq 578

45.7 Conclusions 578

References 578

46 Transcriptomics and Nutrition in Mammalians 581
Carmen Arnal, Jose M. Lou-Bonafonte, María V. Martínez-Gracia, María J. Rodríguez-Yoldi, and Jesús Osada

46.1 Introduction 581

46.1.1 DNA Chips or Microarrays 583

46.2 Adipocyte Transcriptome 584

46.2.1 Influence of Caloric Restriction 585

46.2.2 Effect of Dietary Carbohydrate Content 586

46.2.3 Effect of Dietary Fat Content 586

46.2.4 Nature of Fat 587

46.2.5 Effects of Quality and Protein Content 587

46.3 Intestinal Transcriptome 587

46.3.1 Influence of Caloric Restriction 588

46.3.2 Effects of Carbohydrate Content of Diets 589

46.3.3 Effect of Dietary Fat Content 589

46.3.4 Effects of Quality and Protein Content 589

46.3.5 Environmental Conditions of Intestine 590

46.4 Hepatic Transcriptome 590

46.4.1 Influence of Fasting and Feeding 590

46.4.2 Influence of Caloric Restriction 591

46.4.3 Effects of Carbohydrate Content of Diets 592

46.4.4 Effect of Dietary Fat Content 593

46.4.5 Effects of Quality and Protein Content 598

46.5 Muscular Transcriptome 599

46.5.1 Influence of Caloric Restriction 599

46.5.2 Effect of Dietary Fat Content 600

46.5.3 Effects of Quality and Protein Content 601

46.6 Conclusion 601

Acknowledgments 601

References 602

Part IX Nutriethics 609

47 Nutritional Sciences at the Intersection of Omics Disciplines and Ethics: A Focus on Nutritional Doping 611
Nicola Luigi Bragazzi

47.1 Introduction 611

47.2 Nutrigenomics and Nutriproteomics 612

47.3 Sports Nutriproteogenomics 614

47.4 Nutritional and Sports Ethics 615

47.5 Conclusions 617

References 618

Part X Nanotechnology 623

48 Current Relevant Nanotechnologies for the Food Industry 625
Kelvii Wei Guo

48.1 Introduction 625

48.2 Nanotechnology in Food Industry 626

48.2.1 Nanoparticles (NPs) 627

48.2.2 Nanodispersion 627

48.2.3 Nanocapsules 628

48.2.4 Nanocolloids 628

48.2.5 Nanoemulsions 629

48.2.6 Nanofibers/Tubes 629

48.3 Natural Biopolymers 630

48.4 Nanotechnology for Food Packaging 630

48.4.1 Silver Nanoparticles and Nanocomposites as Antimicrobial Food Packaging Materials 630

48.4.2 Nanolaminates/Coating 631

48.4.3 Nanosensors 631

48.5 Outstanding State-of-the-Art Issues 633

48.6 Conclusion 633

References 634

Index 637

最近チェックした商品