初級偏微分方程式テキスト・解答編セット(第3版)<br>Beginning Partial Differential Equations + Solution Manual (Pure and Applied Math (Wiley)) (3 PCK HAR/)

個数:

初級偏微分方程式テキスト・解答編セット(第3版)
Beginning Partial Differential Equations + Solution Manual (Pure and Applied Math (Wiley)) (3 PCK HAR/)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9781118880623
  • DDC分類 515

Full Description

A text and student manual to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields

Featuring a thoroughly revised presentation of topics, the Text & Student Manual Set of Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible, combination of techniques, applications, and introductory theory on the subject of partial differential equations. The new edition offers nonstandard coverage on material including Burger's equation, the telegraph equation, damped wave motion, and the use of characteristics to solve nonhomogeneous problems.

Contents

1 First Ideas 1

1.1 Two Partial Differential Equations 1

1.2 Fourier Series 10

1.3 Two Eigenvalue Problems 28

1.4 A Proof of the Fourier Convergence Theorem 30

2. Solutions of the Heat Equation 39

2.1 Solutions on an Interval (0, L) 39

2.2 A Nonhomogeneous Problem 64

2.3 The Heat Equation in Two space Variables 71

2.4 The Weak Maximum Principle 75

3. Solutions of the Wave Equation 81

3.1 Solutions on Bounded Intervals 81

3.2 The Cauchy Problem 109

3.3 The Wave Equation in Higher Dimensions 137

4. Dirichlet and Neumann Problems 147

4.1 Laplace's Equation and Harmonic Functions 147

4.2 The Dirichlet Problem for a Rectangle 153

4.3 The Dirichlet Problem for a Disk 158

4.4 Properties of Harmonic Functions 165

4.5 The Neumann Problem 187

4.6 Poisson's Equation 197

4.7 Existence Theorem for a Dirichlet Problem 200

5. Fourier Integral Methods of Solution 213

5.1 The Fourier Integral of a Function 213

5.2 The Heat Equation on a Real Line 220

5.3 The Debate over the Age of the Earth 230

5.4 Burger's Equation 233

5.5 The Cauchy Problem for a Wave Equation 239

5.6 Laplace's Equation on Unbounded Domains 244

6. Solutions Using Eigenfunction Expansions 253

6.1 A Theory of Eigenfunction Expansions 253

6.2 Bessel Functions 266

6.3 Applications of Bessel Functions 279

6.4 Legendre Polynomials and Applications 288

7. Integral Transform Methods of Solution 307

7.1 The Fourier Transform 307

7.2 Heat and Wave Equations 318

7.3 The Telegraph Equation 332

7.4 The Laplace Transform 334

8 First-Order Equations 341

8.1 Linear First-Order Equations 342

8.2 The Significance of Characteristics 349

8.3 The Quasi-Linear Equation 354

9 End Materials 361

9.1 Notation 361

9.2 Use of MAPLE 363

9.3 Answers to Selected Problems 370

Index 434

最近チェックした商品