加齢の生物統計学<br>The Biostatistics of Aging : From Gompertzian Mortality to an Index of Aging-Relatedness (1ST)

個数:
電子版価格
¥16,541
  • 電子版あり

加齢の生物統計学
The Biostatistics of Aging : From Gompertzian Mortality to an Index of Aging-Relatedness (1ST)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 258 p.
  • 言語 ENG
  • 商品コード 9781118645857
  • DDC分類 571.878

Full Description

A practical and clarifying approach to aging and aging-related diseases

Providing a thorough and extensive theoretical framework, The Biostatistics of Aging: From Gompertzian Mortality to an Index of Aging-Relatedness addresses the surprisingly subtlenotion—with consequential biomedical and public health relevance—of what it means for acondition to be related to aging. In this pursuit, the book presents a new quantitative methodto examine the relative contributions of genetic and environmental factors to mortality anddisease incidence in a population.

With input from evolutionary biology, population genetics, demography, and epidemiology, this medically motivated book describes an index of aging-relatedness and also features:



Original results on the asymptotic behavior of the minimum of time-to-event random variables, which extends those of the classical statistical theory of extreme values
A comprehensive and satisfactory explanation based on biological principles of the Gompertz pattern of mortality in human populations
The development of an evolution-based model of causation relevant to mortality and aging-related diseases of complex etiology
An explanation of how and why the description of human mortality by the Gompertz distribution can be improved upon from first principles
The amply illustrated analysis of real-world data, including a program for conducting the analysis written in the freely available R statistical software
Technical appendices including mathematical material as well as an extensive and multidisciplinary bibliography on aging and aging-related diseases

The Biostatistics of Aging: From Gompertzian Mortality to an Index of Aging-Relatedness is an excellent resource for practitioners and researchers with an interest in aging and aging-related diseases from the fields of medicine, biology, gerontology, biostatistics, epidemiology, demography, and public health.

Contents

PREFACE AND ACKNOWLEDGMENT ix

1 Introduction 1

2 An Account of Gompertzian Mortality through Statistical and Evolutionary Arguments 6

2.1 The Statistical Theory of Extreme Values 10

2.2 The Evolutionary Theory of Aging 36

3 The Argument against Gompertzian Mortality 69

3.1 Departures from the Gompertz Model 70

3.2 An Evolution-Based Model of Causation 72

4 The Index of Aging-Relatedness 93

4.1 A Survival Mixture Model of the Gompertz and Weibull Distributions 94

4.2 Definition and Interpretation of the Index of Aging-Relatedness 97

4.3 The Survival Mixture Model and Competing Risks 103

4.4 Estimation of the Model Parameters 107

4.5 Illustrative Application: The Israeli Ischemic Heart Disease Study 109

4.6 Precision of Estimation 122

5 Discussion: Implications 128

5.1 The Meaning of the Gompertz Parameter 128

5.2 Age as a Risk Factor for Disease 132

5.3 Are Aging-Related Diseases an Integral Part of Aging? 134

5.4 Biological versus Chronological Aging 135

5.5 The Public Health Notion of Compression of Morbidity 138

5.6 A Picture of Aging for the Twenty-First Century 143

APPENDIX A: PROOFS OF RESULTS IN SECTION 2.1.2 WITH SOME EXTENSIONS 154

APPENDIX B: DERIVATION OF HAMILTON'S EQUATION FOR THE FORCE OF NATURAL SELECTION ON MORTALITY 170

APPENDIX C: SOME PROPERTIES OF THE GOMPERTZ AND WEIBULL DISTRIBUTIONS 174

APPENDIX D: FIRST AND SECOND PARTIAL DERIVATIVES OF THE MIXTURE LOG-LIKELIHOOD FUNCTION 178

APPENDIX E: EXPECTATION-CONDITIONAL MAXIMIZATION (ECM) ALGORITHM 183

APPENDIX F: R PROGRAM 190

REFERENCES 226

AUTHOR INDEX 245

SUBJECT INDEX 253

最近チェックした商品