Multilevel Modeling Techniques and Applications in Institutional Research (New Directions for Institutional Research)

個数:

Multilevel Modeling Techniques and Applications in Institutional Research (New Directions for Institutional Research)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 132 p.
  • 言語 ENG
  • 商品コード 9781118444009
  • DDC分類 378

Full Description

Multilevel modeling is an increasingly popular multivariate technique that is widely applied in the social sciences. Increasingly, practitioners are making instructional decisions based on results from their multivariate analyses, which often come from nested data that lend themselves to multilevel modeling techniques. As data-driven decision making becomes more critical to colleges and universities, multilevel modeling is a tool that will lead to more efficient estimates and enhance understanding of complex relationships. This volume illustrates both the theoretical underpinnings and practical applications of multilevel modeling in IR. It introduces the fundamental concepts of multilevel modeling techniques in a conceptual and technical manner. Providing a range of examples of nested models that are based on linear and categorical outcomes, it then offers important suggestions about presenting results of multilevel models through charts and graphs. This is the 154th volume of this Jossey-Bass quarterly report series.
Always timely and comprehensive, New Directions for Institutional Research provides planners and administrators in all types of academic institutions with guidelines in such areas as resource coordination, information analysis, program evaluation, and institutional management.

Contents

Editors Notes 1 Joe L. Lott, II, James S. Antony 1. Hierarchical Data Structures, Institutional Research, and Multilevel Modeling 5 Ann A. O Connell, Sandra J. Reed The authors provide an overview of hierarchical linear modeling (HLM) and highlight the particular advantages of HLM for those involved in institutional research. 2. Introduction to Estimation Issues in Multilevel Modeling 23 D. Betsy McCoach, Anne C. Black This chapter is a conceptual, nontechnical overview of estimation and model fit issues in multilevel modeling. 3. Using Existing Data Sources/Programs and Multilevel Modeling Techniques for Questions in Institutional Research 41 Joe P. King, Jose M. Hernandez, Joe L. Lott, II This chapter examines the data sources that lend themselves to institutional research and multilevel modeling and briefly describes the various software packages that handle multilevel models. 4. Multilevel Models for Binary Data 57 Daniel A. Powers The author provides a brief overview of models with binary outcomes and carries out two example multilevel analyses with binary outcomes on institutional data. 5. Cross-Classified Random Effects Models in Institutional Research 77 Laura E. Meyers This chapter provides one example of how cross-classified random effects modeling can be used to assess faculty gender pay differentials in higher education. 6. Multilevel Modeling: Applications to Research on the Assessment of Student Learning, Engagement, and Developmental Outcomes 95 Pu-Shih Daniel Chen, Kristina Cragg Using data from a four-year university located in the southeastern United States, this chapter provides an example of how to use multilevel modeling to study the effects of a learning community on student learning and discusses some strategies for reporting multilevel modeling results. 7. Multilevel Modeling: Presenting and Publishing the Results for Internal and External Constituents 111 Gary R. Pike, Louis M. Rocconi Multilevel modeling provides several advantages over traditional ordinary least squares regression analysis; however, reporting results to stakeholders can be challenging. This chapter identifies some useful principles for reporting results. INDEX 125

最近チェックした商品