Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells

個数:
電子版価格
¥21,049
  • 電子版あり

Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 421 p.
  • 言語 ENG
  • 商品コード 9781118437872
  • DDC分類 621.31244

Full Description


Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation.The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and toxicity issues. The device performance of CZTS-based thin film solar cells has been steadily improving over the past 20 years, and they have now reached near commercial efficiency levels (10%). These achievements prove that CZTS-based solar cells have the potential to be used for large-scale deployment of photovoltaics.With contributions from leading researchers from academia and industry, many of these authors have contributed to the improvement of its efficiency, and have rich experience in preparing a variety of semiconducting thin films for solar cells.

Contents

Preface ixList of Contributors xiPart I Introduction 11 An Overview of CZTS-Based Thin-Film Solar Cells 3Kentaro Ito1.1 Introduction 31.2 The Photovoltaic Effect 41.3 In Pursuit of an Optimal Semiconductor for Photovoltaics 221.4 Conclusions 36Acknowledgements 37References 372 Market Challenges for CZTS-Based Thin-Film Solar Cells 43Arnulf Jager-Waldau2.1 Introduction 432.2 Compound Thin-Film Technologies and Manufacturing 452.3 Challenges for CZTS Solar Cells in the Market 492.4 Conclusion 51References 51Part II The Physics and Chemistry of Quaternary Chalcogenide Semiconductors 533 Crystallographic Aspects of Cu2ZnSnS4 (CZTS) 55Susan Schorr3.1 Introduction: What Defines a Crystal Structure? 553.2 The Crystal Structure of CZTS 573.3 Point Defects in CZTS and the Role of Stoichiometry 683.4 Differentiation between Intergrown Kesterite- and Stannite-Type Phases: A Simulational Approach 713.5 Summary 72References 734 Electronic Structure and Optical Properties from First-Principles Modeling 75Clas Persson, Rongzhen Chen, Hanyue Zhao, Mukesh Kumar and Dan Huang4.1 Introduction 754.2 Computational Background 774.3 Crystal Structure 804.4 Electronic Structure 824.5 Optical Properties 974.6 Summary 101Acknowledgements 102References 1025 Kesterites: Equilibria and Secondary Phase Identification 107Dominik M. Berg and Phillip J. Dale5.1 Introduction 1075.2 Chemistry of the Kesterite Reaction 1085.3 Phase Identification 116Acknowledgements 128References 1286 Growth of CZTS Single Crystals 133Akira Nagaoka and Kenji Yoshino6.1 Introduction 1336.2 Growth Process 1346.3 Properties of CZTS Single Crystals 1416.4 Conclusion 145Acknowledgements 146References 1467 Physical Properties: Compiled Experimental Data 149Sadao Adachi7.1 Introduction 1497.2 Structural Properties 1507.3 Thermal Properties 1527.4 Mechanical and Lattice Dynamic Properties 1577.5 Electronic Energy-Band Structure 1627.6 Optical Properties 1697.7 Carrier Transport Properties 170References 176Part III Synthesis of Thin Films and Their Application to Solar Cells 1818 Sulfurization of Physical Vapor-Deposited Precursor Layers 183Hironori Katagiri8.1 Introduction 1838.2 First CZTS Thin-Film Solar Cells 1848.3 ZnS as Zn-Source in Precursor 1848.4 Influence of Absorber Thickness 1878.5 New Sulfurization System 1888.6 Influence of Morphology 1898.7 Co-Sputtering System with Annealing Chamber 1908.8 Active Composition 1918.9 CZTS Compound Target 1928.10 Conclusions 201References 2019 Reactive Sputtering of CZTS 203Charlotte Platzer-Bjoerkman, Tove Ericson, Jonathan Scragg and Tomas Kubart9.1 Introduction 2039.2 The Reactive Sputtering Process 2059.3 Properties of Sputtered Precursors 2069.4 Annealing of Sputtered Precursors 2149.5 Device Performance 2159.6 Summary 217References 21710 Coevaporation of CZTS Films and Solar Cells 221Thomas Unold, Justus Just and Hans-Werner Schock10.1 Introduction 22110.2 Basic Principles 22110.3 Process Variations 227Acknowledgements 236References 23611 Synthesis of CZTSSe Thin Films from Nanocrystal Inks 239Charles J. Hages and Rakesh Agrawal11.1 Introduction 23911.2 Nanocrystal Synthesis 24111.3 Nanocrystal Characterization 24911.4 Sintering 25111.5 Conclusion 264References 26412 CZTS Thin Films Prepared by a Non-Vacuum Process 271Kunihiko Tanaka12.1 Introduction 27112.2 Sol-Gel Sulfurization Method 27212.3 Preparation of CZTS Thin Films by Sol-Gel Sulfurization Method 27412.4 Chemical Composition Dependence 27912.5 H2S Concentration Dependence 28212.6 CZTS Solar Cell Prepared by Non-vacuum Processes 284References 28513 Growth of CZTS-Based Monograins and Their Application to Membrane Solar Cells 289Enn Mellikov, Mare Altosaar, Marit Kauk-Kuusik, Kristi Timmo, Dieter Meissner, Maarja Grossberg, Juri Krustok and Olga Volobujeva13.1 Introduction 28913.2 Monograin Powder Growths, Basics of the Process 29113.3 Influence of Chemical Etching on the Surface Composition of Monograins 29513.4 Thermal Treatment of CZTS-Based Monograins 29813.5 Optoelectronic Properties of CZTS-Based Monograins and Polycrystals 30013.6 Conclusion 306References 306Part IV Device Physics of Thin-Film Solar Cells 31114 The Role of Grain Boundaries in CZTS-Based Thin-Film Solar Cells 313Joel B. Li and Bruce M. Clemens14.1 Introduction 31314.2 CIGSe and CdTe Solar Cells 31414.3 CZTS-Based Thin-Film Solar Cells 31814.4 Conclusion 327References 32815 CZTS-Based Thin-Film Solar Cells Prepared via Coevaporation 335Byungha Shin, Talia Gershon and Supratik Guha15.1 Introduction 33515.2 Preparation of CZTS and CZTSe Absorbers 33715.3 Fundamental Properties of Coevaporated CZTS and CZTSe Absorbers 33815.4 Device Characteristics of Full-Sulfide CZTS Thin-Film Solar Cells 34815.5 Device Characteristics of Full-Selenide CZTSe Thin-Film Solar Cells 35415.6 Summary 358References 35816 Loss Mechanisms in Kesterite Solar Cells 363Alex Redinger and Susanne Siebentritt16.1 Introduction 36316.2 Current State-of-the-Art CZTS-Based Thin-Film Solar Cells 36416.3 Dominant Recombination Path 36616.4 Band-Gap Variations 37216.5 Series Resistance and its Relation to Voc Losses 37616.6 Conclusion 381Acknowledgements 382References 38217 Device Characteristics of Hydrazine-Processed CZTSSe 387Oki Gunawan, Tayfun Gokmen and David B. Mitzi17.1 Introduction 38717.2 Device Characteristics 38917.3 Summary 406Acknowledgements 407References 408Subject Index 413

最近チェックした商品