抽象代数学入門(第4版)<br>Introduction to Abstract Algebra (4 HAR/PAP)

個数:

抽象代数学入門(第4版)
Introduction to Abstract Algebra (4 HAR/PAP)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9781118296035
  • DDC分類 512

Full Description

Praise for the Third Edition

". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."—Zentralblatt MATH

The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately begin to perform computations using abstract concepts that are developed in greater detail later in the text.

The Fourth Edition features important concepts as well as specialized topics, including:



The treatment of nilpotent groups, including the Frattini and Fitting subgroups


Symmetric polynomials


The proof of the fundamental theorem of algebra using symmetric polynomials


The proof of Wedderburn's theorem on finite division rings


The proof of the Wedderburn-Artin theorem



Throughout the book, worked examples and real-world problems illustrate concepts and their applications, facilitating a complete understanding for readers regardless of their background in mathematics. A wealth of computational and theoretical exercises, ranging from basic to complex, allows readers to test their comprehension of the material. In addition, detailed historical notes and biographies of mathematicians provide context for and illuminate the discussion of key topics. A solutions manual is also available for readers who would like access to partial solutions to the book's exercises.

Introduction to Abstract Algebra, Fourth Edition is an excellent book for courses on the topic at the upper-undergraduate and beginning-graduate levels. The book also serves as a valuable reference and self-study tool for practitioners in the fields of engineering, computer science, and applied mathematics.

Contents

Preface ix Acknowledgment xv

Notations Used in the Text xvii

A Sketch of the History of Algebra to 1929 xxi

Preliminaries 1

Proofs 1

Sets 5

Mappings 9

Equivalences 17

Integers and Permutations 22

Induction 22

Divisors and Prime Factorization 30

Integers Modulo n 41

Permutations 51

An Application to Cryptography 63

Groups 66

Binary Operations 66

Groups 73

Subgroups 82

Cyclic Groups and the Order of an Element 87

Homomorphisms and Isomorphisms 95

Cosets and Lagrange's Theorem 105

Groups of Motions and Symmetries 114

Normal Subgroups 119

Factor Groups 127

The Isomorphism Theorem 133

An Application to Binary Linear Codes 140

Rings 155

Examples and Basic Properties 155

Integral Domains and Fields 166

Ideals and Factor Rings 174

Homomorphisms 183

Ordered Integral Domains 193

Polynomials 196

Polynomials 196

Factorization of Polynomials over a Field 209

Factor Rings of Polynomials over a Field 222

Partial Fractions 231

Symmetric Polynomials 233

Formal Construction of Polynomials 243

Factorization in Integral Domains 246

Irreducibles and Unique Factorization 247

Principal Ideal Domains 259

Fields 268

Vector Spaces 269

Algebraic Extensions 277

Splitting Fields 285

Finite Fields 293

Geometric Constructions 299

The Fundamental Theorem of Algebra 304

An Application to Cyclic and BCH Codes 305

Modules over Principal Ideal Domains 318

Modules 318

Modules over a PID 327

p-Groups and the Sylow Theorems 341

Factors and Products 341

Cauchy's Theorem 349

Group Actions 356

The Sylow Theorems 364

Semidirect Products  371

An Application to Combinatorics 375

Series of Subgroups 381

The Jordan-Holder Theorem 382

Solvable Groups 387

Nilpotent Groups 394

Galois Theory 401

Galois Groups and Separability 402

The Main Theorem of Galois Theory 410

Insolvability of Polynomials 423

Cyclotomic Polynomials and Wedderburn's Theorem 430

Finiteness Conditions for Rings and Modules 435

Wedderburn's Theorem 435

The Wedderburn-Artin Theorem 444

Appendices

Complex Numbers 455

Matrix Arithmetic 462

Zorn's Lemma 467

Proof of the Recursion Theorem 471

Bibliography 473

Selected Answers 475

Index 499

最近チェックした商品