Introduction to Abstract Algebra (4 SOL)

個数:
電子版価格
¥4,609
  • 電子版あり

Introduction to Abstract Algebra (4 SOL)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 170 p.
  • 言語 ENG
  • 商品コード 9781118288153
  • DDC分類 512

Full Description

An indispensable companion to the book hailed an "expository masterpiece of the highest didactic value" by Zentralblatt MATH

This solutions manual helps readers test and reinforce the understanding of the principles and real-world applications of abstract algebra gained from their reading of the critically acclaimed Introduction to Abstract Algebra. Ideal for students, as well as engineers, computer scientists, and applied mathematicians interested in the subject, it provides a wealth of concrete examples of induction, number theory, integers modulo n, and permutations. Worked examples and real-world problems help ensure a complete understanding of the subject, regardless of a reader's background in mathematics.

Contents

0 Preliminaries 1

0.1 Proofs 1

0.2 Sets 2

0.3 Mappings 3

0.4 Equivalences 4

1 Integers and Permutations 6

1.1 Induction 6

1.2 Divisors and Prime Factorization 8

1.3 Integers Modulo 11

1.4 Permutations 13

2 Groups 17

2.1 Binary Operations 17

2.2 Groups 19

2.3 Subgroups 21

2.4 Cyclic Groups and the Order of an Element 24

2.5 Homomorphisms and Isomorphisms 28

2.6 Cosets and Lagrange's Theorem 30

2.7 Groups of Motions and Symmetries 32

2.8 Normal Subgroups 34

2.9 Factor Groups 36

2.10 The Isomorphism Theorem 38

2.11 An Application to Binary Linear Codes 43

3 Rings 47

3.1 Examples and Basic Properties 47

3.2 Integral Domains and Fields 52

3.3 Ideals and Factor Rings 55

3.4 Homomorphisms 59

3.5 Ordered Integral Domains 62

4 Polynomials 64

4.1 Polynomials 64

4.2 Factorization of Polynomials over a Field 67

4.3 Factor Rings of Polynomials over a Field 70

4.4 Partial Fractions 76

4.5 Symmetric Polynomials 76

5 Factorization in Integral Domains 81

5.1 Irreducibles and Unique Factorization 81

5.2 Principal Ideal Domains 84

6 Fields 88

6.1 Vector Spaces 88

6.2 Algebraic Extensions 90

6.3 Splitting Fields 94

6.4 Finite Fields 96

6.5 Geometric Constructions 98

6.7 An Application to Cyclic and BCH Codes 99

7 Modules over Principal Ideal Domains 102

7.1 Modules 102

7.2 Modules over a Principal Ideal Domain 105

8 p-Groups and the Sylow Theorems 108

8.1 Products and Factors 108

8.2 Cauchy's Theorem 111

8.3 Group Actions 114

8.4 The Sylow Theorems 116

8.5 Semidirect Products 118

8.6 An Application to Combinatorics 119

9 Series of Subgroups 122

9.1 The Jordan-H¨older Theorem 122

9.2 Solvable Groups 124

9.3 Nilpotent Groups 127

10 Galois Theory 130

10.1 Galois Groups and Separability 130

10.2 The Main Theorem of Galois Theory 134

10.3 Insolvability of Polynomials 138

10.4 Cyclotomic Polynomials and Wedderburn's Theorem 140

11 Finiteness Conditions for Rings and Modules 142

11.1 Wedderburn's Theorem 142

11.2 The Wedderburn-Artin Theorem 143

Appendices 147

Appendix A: Complex Numbers 147

Appendix B: Matrix Arithmetic 148

Appendix C: Zorn's Lemma 149

最近チェックした商品