社会科学者のためのデータ管理<br>Data Management for Social Scientists : From Files to Databases (Methodological Tools in the Social Sciences)

個数:
  • ポイントキャンペーン

社会科学者のためのデータ管理
Data Management for Social Scientists : From Files to Databases (Methodological Tools in the Social Sciences)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 242 p.
  • 言語 ENG
  • 商品コード 9781108964784
  • DDC分類 300.72

Full Description

The 'data revolution' offers many new opportunities for research in the social sciences. Increasingly, social and political interactions can be recorded digitally, leading to vast amounts of new data available for research. This poses new challenges for organizing and processing research data. This comprehensive introduction covers the entire range of data management techniques, from flat files to database management systems. It demonstrates how established techniques and technologies from computer science can be applied in social science projects, drawing on a wide range of different applied examples. This book covers simple tools such as spreadsheets and file-based data storage and processing, as well as more powerful data management software like relational databases. It goes on to address advanced topics such as spatial data, text as data, and network data. This book is one of the first to discuss questions of practical data management specifically for social science projects. This title is also available as Open Access on Cambridge Core.

Contents

Part I. Introduction: 1. Motivation; 2. Gearing up; 3. Data = content + structure; Part II. Data in Files: 4. Storing data in files; 5. Managing data in spreadsheets; 6. Basic data management in R; 7. R and the tidyverse; Part III. Data in Databases: 8. Introduction to relational databases; 9. Relational databases and multiple tables; 10. Database fine-tuning; Part IV. Special Types of Data: 11. Spatial data; 12. Text data; 13. Network data; Part V. Conclusion: 14. Best practices in data management.

最近チェックした商品