Series and Products in the Development of Mathematics: Volume 1 (2ND)

個数:

Series and Products in the Development of Mathematics: Volume 1 (2ND)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 776 p.
  • 言語 ENG
  • 商品コード 9781108709453
  • DDC分類 510.722

Full Description

This is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible to even advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including deBranges' solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.

Contents

1. Power series in fifteenth-century Kerala; 2. Sums of powers of integers; 3. Infinite product of Wallis; 4. The binomial theorem; 5. The rectification of curves; 6. Inequalities; 7. The calculus of Newton and Leibniz; 8. De Analysi per Aequationes Infinitas; 9. Finite differences: interpolation and quadrature; 10. Series transformation by finite differences; 11. The Taylor series; 12. Integration of rational functions; 13. Difference equations; 14. Differential equations; 15. Series and products for elementary functions; 16. Zeta values; 17. The gamma function; 18. The asymptotic series for ln Γ(x); 19. Fourier series; 20. The Euler-Maclaurin summation formula; 21. Operator calculus and algebraic analysis; 22. Trigonometric series after 1830; 23. The hypergeometric series; 24. Orthogonal polynomials; Bibliography; Index.

最近チェックした商品