低次元モデルによる高次元データ解析:原理・計算・応用<br>High-Dimensional Data Analysis with Low-Dimensional Models : Principles, Computation, and Applications

個数:

低次元モデルによる高次元データ解析:原理・計算・応用
High-Dimensional Data Analysis with Low-Dimensional Models : Principles, Computation, and Applications

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 650 p.
  • 言語 ENG
  • 商品コード 9781108489737
  • DDC分類 006.31015118

Full Description

Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.

Contents

Foreword; Preface; Acknowledgements; 1. Introduction; Part I. Principles of Low-Dimensional Models: 2. Sparse Signal Models; 3. Convex Methods for Sparse Signal Recovery; 4. Convex Methods for Low-Rank Matrix Recovery; 5. Decomposing Low-Rank and Sparse Matrices; 6. Recovering General Low-Dimensional Models; 7. Nonconvex Methods for Low-Dimensional Models; Part II. Computation for Large-Scale Problems: 8. Convex Optimization for Structured Signal Recovery; 9. Nonconvex Optimization for High-Dimensional Problems; Part III. Applications to Real-World Problems: 10. Magnetic Resonance Imaging; 11. Wideband Spectrum Sensing; 12. Scientific Imaging Problems; 13. Robust Face Recognition; 14. Robust Photometric Stereo; 15. Structured Texture Recovery; 16. Deep Networks for Classification; Appendices: Appendix A. Facts from Linear Algebra and Matrix Analysis; Appendix B. Convex Sets and Functions; Appendix C. Optimization Problems and Optimality Conditions; Appendix D. Methods for Optimization; Appendix E. Facts from High-Dimensional Statistics; Bibliography; List of Symbols; Index.

最近チェックした商品